scholarly journals FEZF1-AS1 is a key regulator of cell cycle, epithelial–mesenchymal transition and Wnt/β-catenin signaling in nasopharyngeal carcinoma cells

2019 ◽  
Vol 39 (1) ◽  
Author(s):  
Yunzhou Cheng

AbstractBackground: Accumulating studies discloses that long non-coding RNAs (lncRNAs) serve important roles in human tumorigenesis, including nasopharyngeal carcinoma (NPC). The purpose of the present study was to determine the role of lncRNA FEZF1-AS1 in NPC.Materials and methods: The expression levels of FEZF1-AS1 in NPC tissues and cell lines were detected by RT-qPCR analysis. MTT assay was performed to investigate the proliferation of NPC cells in vitro, whereas the migration and invasion of NPC cells were determined by wound healing assay and transwell assay. A nude mouse tumor model was established to study the role of FEZF1-AS1 in NPC tumorigenesis in vivo. The expression levels of proteins were detected by Western blot assay.Results: The results showed that FEZF1-AS1 expression was increased in the NPC tissues and cell lines, and the higher expression of FEZF1-AS1 was closely associated with poor prognosis of NPC patients. We further observed that knockdown of FEZF1-AS1 inhibited the proliferation of NPC cells in vitro and suppressed NPC xenograft growth in vivo through inducing G2/M cell cycle arrest. The migratory and invasive abilities of NPC cells were also reduced upon FEZF1-AS1 knockdown. Moreover, we demonstrated that inhibition of FEZF1-AS1 remarkably suppressed epithelial–mesenchymal transition (EMT) and reduced β-catenin accumulation in nucleus in NPC cells.Conclusions: Collectively, we showed that FEZF1-AS1 might be a key regulator of cell cycle, EMT and Wnt/β-catenin signaling in NPC cells, which may be helpful for understanding of pathogenesis of NPC.

2018 ◽  
Vol 96 (3) ◽  
pp. 326-331 ◽  
Author(s):  
Ping He ◽  
Xiaojie Jin

Objective: The aim of this study was to investigate the role of SOX10 in nasopharyngeal carcinoma (NPC) and the underlying molecular mechanisms. Methods: The expression of SOX10 was initially assessed in human NPC tissues and a series of NPC cell lines through quantitative real-time PCR (qRT-PCR) and Western blot. Then, cell proliferation, cycle, migration, and the invasiveness of NPC cells with knockdown of SOX10 were examined by MTT, flow cytometry, and Transwell migration and invasion assays, respectively. Finally, nude mice tumorigenicity experiments were performed to evaluate the effects of SOX10 on NPC growth and metastasis in vivo. Results: SOX10 was significantly increased in NPC tissues and cell lines. In-vitro experiments revealed that loss of SOX10 obviously inhibited cell proliferation, migration, and invasiveness, as well as the epithelial–mesenchymal transition (EMT) process in NPC cells. In-vivo experiments further demonstrated that disrupted SOX10 expression restrained NPC growth and metastasis, especially in lung and liver. Conclusion: Taken together, our data confirmed the role of SOX10 as an oncogene in NPC progression, and revealed that SOX10 may serve as a novel biomarker for diagnosis of NPC, as well as a potential therapeutic target against this disease.


2017 ◽  
Vol 37 (3) ◽  
Author(s):  
Xin Chen ◽  
Bo Yue ◽  
Changming Zhang ◽  
Meihao Qi ◽  
Jianhua Qiu ◽  
...  

The aim of the present study was to explore the mechanism through which miR-130a-3p affects the viability, proliferation, migration, and invasion of nasopharyngeal carcinoma (NPC). Tissue samples were collected from the hospital department. NPC cell lines were purchased to conduct the in vitro and in vivo assays. A series of biological assays including MTT, Transwell, and wound healing assays were conducted to investigate the effects of miR-130a-3p and BACH2 on NPC cells. MiR-130a-3p was down-regulated in both NPC tissues and cell lines, whereas BACH2 was up-regulated in both tissues and cell lines. MiR-130a-3p overexpression inhibited NPC cell viability, proliferation, migration, and invasion but promoted cell apoptosis. The converse was true of BACH2, the down-regulation of which could inhibit the corresponding cell abilities and promote apoptosis of NPC cells. The target relationship between miR-130a-3p and BACH2 was confirmed. The epithelial–mesenchymal transition (EMT) pathway was also influenced by miR-130a-3p down-regulation. In conclusion, miR-130a-3p could bind to BACH2, inhibit NPC cell abilities, and promote cell apoptosis.


Author(s):  
Jian Zhang ◽  
Xin Wen ◽  
Xian-Yue Ren ◽  
Ying-Qin Li ◽  
Xin-Ran Tang ◽  
...  

Abstract Background Metastasis remains the major cause of death in nasopharyngeal carcinoma (NPC). Yippee-like 3 (YPEL3) plays an important role in tumorigenesis. However, its function and mechanism in NPC has not been systematically explored. Methods We evaluated YPEL3 expression in NPC cell lines and tissues using real-time PCR and western blotting. Then, we established NPC cell lines that stably overexpressed YPEL3 and knocked down YPEL3 expression to explore its function in NPC in vitro and in vivo. Additionally, we investigated the potential mechanism of YPEL3 action by identifying the Wnt/β-catenin signaling pathway downstream genes using western blotting. Results YPEL3 was downregulated in NPC cell lines and tissue samples. Ectopic expression of YPEL3 inhibited NPC cell migration and invasion in vitro; while silencing of YPEL3 promoted NPC cell migration and invasion. Further study indicated that overexpression of YPEL3 inhibited NPC cell epithelial–mesenchymal transition (EMT) and that silencing it enhanced EMT. Overexpression of YPEL3 suppressed NPC cell lung metastasis in vivo. The mechanism study determined that YPEL3 suppressed the expression levels of Wnt/β-catenin signaling pathway downstream genes and the nuclear translocation of β-catenin. Conclusions YPEL3 suppresses NPC EMT and metastasis by suppressing the Wnt/β-catenin signaling pathway, which would help better understanding the molecular mechanisms of NPC metastasis and provide novel therapeutic targets for NPC treatment.


Biomolecules ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1676
Author(s):  
Monserrat Olea-Flores ◽  
Juan C. Juárez-Cruz ◽  
Miriam D. Zuñiga-Eulogio ◽  
Erika Acosta ◽  
Eduardo García-Rodríguez ◽  
...  

Leptin is a hormone secreted mainly by adipocytes; physiologically, it participates in the control of appetite and energy expenditure. However, it has also been linked to tumor progression in different epithelial cancers. In this review, we describe the effect of leptin on epithelial–mesenchymal transition (EMT) markers in different study models, including in vitro, in vivo, and patient studies and in various types of cancer, including breast, prostate, lung, and ovarian cancer. The different studies report that leptin promotes the expression of mesenchymal markers and a decrease in epithelial markers, in addition to promoting EMT-related processes such as cell migration and invasion and poor prognosis in patients with cancer. Finally, we report that leptin has the greatest biological relevance in EMT and tumor progression in breast, lung, prostate, esophageal, and ovarian cancer. This relationship could be due to the key role played by the enriched tumor microenvironment in adipose tissue. Together, these findings demonstrate that leptin is a key biomolecule that drives EMT and metastasis in cancer.


2022 ◽  
Vol 11 ◽  
Author(s):  
Xuemin Zhong ◽  
Yanping Yang ◽  
Bo Li ◽  
Pan Liang ◽  
Yiying Huang ◽  
...  

Lipid is the building block and an important source of energy, contributing to the malignant behavior of tumor cells. Recent studies suggested that lipid droplets (LDs) accumulations were associated with nasopharyngeal carcinoma (NPC) progression. Solute carrier family 27 member 6 (SLC27A6) mediates the cellular uptake of long-chain fatty acid (LCFA), a necessary lipid component. However, the functions of SLC27A6 in NPC remain unknown. Here, we found a significant reduction of SLC27A6 mRNA in NPC tissues compared with normal nasopharyngeal epithelia (NNE). The promoter methylation ratio of SLC27A6 was greater in NPC than in non-cancerous tissues. The demethylation reagent 5-aza-2’-deoxycytidine (5-aza-dC) remarkably restored the mRNA expression of SLC27A6, suggesting that this gene was downregulated in NPC owing to DNA promoter hypermethylation. Furthermore, SLC27A6 overexpression level in NPC cell lines led to significant suppression of cell proliferation, clonogenicity in vitro, and tumorigenesis in vivo. Higher SLC27A6 expression, on the other hand, promoted NPC cell migration and invasion. In particular, re-expression of SLC27A6 faciliated epithelial-mesenchymal transition (EMT) signals in xenograft tumors. Furthermore, we observed that SLC27A6 enhanced the intracellular amount of triglyceride (TG) and total cholesterol (T-CHO) in NPC cells, contributing to lipid biosynthesis and increasing metastatic potential. Notably, the mRNA level of SLC27A6 was positively correlated with cancer stem cell (CSC) markers, CD24 and CD44. In summary, DNA promoter hypermethylation downregulated the expression of SLC27A6. Furthermore, re-expression of SLC27A6 inhibited the growth capacity of NPC cells but strengthened the CSC markers. Our findings revealed the dual role of SLC27A6 in NPC and shed novel light on the link between lipid metabolism and CSC maintenance.


2020 ◽  
Author(s):  
Sisi Wei ◽  
Shiping Sun ◽  
Xinliang Zhou ◽  
Cong Zhang ◽  
Xiaoya Li ◽  
...  

Abstract A substantial fraction of transcripts are known as long noncoding RNAs (lncRNAs), and these transcripts play pivotal roles in the development of cancer. However, little information has been published regarding the functions of lncRNAs in oesophageal squamous cell carcinoma (ESCC) and the underlying mechanisms. In our previous studies, we demonstrated that small nucleolar RNA host gene 5 (SNHG5), a known lncRNA, is dysregulated in gastric cancer (GC). In this study, we explored the expression and function of SNHG5 in development of ESCC. SNHG5 was found to be downregulated in human ESCC tissues and cell lines, and this downregulation was associated with cancer progression, clinical outcomes and survival rates of ESCC patients. Furthermore, we also found that overexpression of SNHG5 significantly inhibited the proliferation, migration and invasion of ESCC cells in vivo and in vitro. Notably, we found that metastasis-associated protein 2 (MTA2) was pulled down by SNHG5 in ESCC cells using RNA pulldown assay. We also found that SNHG5 reversed the epithelial–mesenchymal transition by interacting with MTA2. In addition, overexpression of SNHG5 downregulated the transcription of MTA2 and caused its ubiquitin-mediated degradation. Thus, overexpression of MTA2 partially abrogated the effect of SNHG5 in ESCC cell lines. Furthermore, we found that MTA2 mRNA expression was significantly elevated in ESCC specimens, and a negative correlation between SNHG5 and MTA2 expression was detected. Overall, this study demonstrated, for the first time, that SNHG5-regulated MTA2 functions as an important player in the progression of ESCC and provide a new potential therapeutic strategy for ESCC.


2020 ◽  
Vol 10 (7) ◽  
pp. 930-938
Author(s):  
Dawei Zhang ◽  
Lin Xiong ◽  
Liang Li ◽  
Yuan Chen ◽  
Xiaojun Tang ◽  
...  

Objective: In order to investigate the effects of LMP1-Fab antibody on Nasopharyngeal carcinoma (NPC) cancer stem cells (CSCs). Methods/ Results: Methods were performed to study the effects of LMP1-Fab antibody on NPC CSCs in vivo and in vitro, for example, transwell chamber assay, wound healing assay, western blot assay, quantitative real-time PCR assay animal experiments, animal fluorescence imaging, H&E staining, immunohistochemistry. We identified that LMP1 activated the migration and invasion of NPC. Whereas the LMP1-Fab antibody inhibited cell invasion, epithelial-mesenchymal transition (EMT) and migration of NPC CSCs in LMP1+ HNE2 cells. Furthermore, LMP1-Fab antibody significantly increased the expression of E-cadherin, and reduced the expressions of vimentin,N -cadherin and Slug in LMP1+ HNE2 CSCs cells. Mechanistically, LMP1-Fab antibody inhibited lung and liver metastasis by regulating the wnt/ -catenin pathway in the nude mice. Conclusion: These results suggested that the novel antibody-targeting LMP1 is likely to be a potential strategy for the treatment of NPC.


Author(s):  
Zhongwei Wang ◽  
Yali Wang ◽  
Hongtao Ren ◽  
Yingying Jin ◽  
Ya Guo

Zinc and ring finger 3 (ZNRF3), which belongs to the E3 ubiquitin ligase family, is involved in the progression and development of cancer. However, the expression and function of ZNRF3 in human nasopharyngeal carcinoma (NPC) remain unclear. Thus, the aim of this study was to investigate the role of ZNRF3 in human NPC. Our results showed that ZNRF3 was downregulated in NPC cell lines. Restoration of ZNRF3 significantly inhibited the proliferation of NPC cells and tumor xenograft growth in vivo. In addition, overexpression of ZNRF3 suppressed migration and invasion, as well as attenuated the epithelial‐mesenchymal transition (EMT) process in NPC cells. Furthermore, restoration of ZNRF3 obviously downregulated the expression levels of β-catenin, cyclin D1, and c-Myc in NPC cells. In conclusion, these data suggest that ZNRF3 inhibited the metastasis and tumorigenesis via suppressing the Wnt/β-catenin signaling pathway in NPC cells. Thus, ZNRF3 may act as a novel molecular target for the treatment of NPC.


2017 ◽  
Vol 44 (2) ◽  
pp. 567-580 ◽  
Author(s):  
Wei Zhang ◽  
Weitang Yuan ◽  
Junmin Song ◽  
Shijun Wang ◽  
Xiaoming Gu

Background/Aims: Increasing evidence demonstrates that long non-coding RNAs (lncRNAs) regulate diverse cellular processes and cancer progression. Whether lncRNAs play any functional role in colorectal carcinoma (CRC) remains largely unknown. The aim of this study was to investigate the role of lncRNA CPS1 intronic transcript 1 (CPS1-IT1) in CRC. Methods: Expression of CPS1-IT1 was initially assessed in human CRC tissues and in a series of CRC cell lines. The correlations between CPS1-IT1 levels and survival outcomes were analyzed to elucidate the clinical significance of CPS1-IT1 in CRC. The underlying mechanisms of CPS1-IT1 in CRC were analyzed through in vitro and in vivo functional assays. Results: Expression of CPS1-IT1 was significantly decreased in CRC tissues and cell lines, and patients with low CPS1-IT1 expression had poor survival outcomes. The results of in vitro assays revealed that CPS1-IT1 significantly reduced cell proliferation, migration and invasion capacities and accelerated cell apoptosis, thereby suppressing epithelial-mesenchymal transition (EMT). An in vivo animal model also demonstrated the tumor-suppressive role of CPS1-IT1. Conclusion: In this study, we found that CPS1-IT1 has a tumor-suppressive role in CRC. Our data suggest that CPS1-IT1 could be used as a new prognostic biomarker and therapeutic target for CRC.


2018 ◽  
Vol 46 (3) ◽  
pp. 1122-1133 ◽  
Author(s):  
Bing Zeng ◽  
Zewei Lin ◽  
Huilin Ye ◽  
Di Cheng ◽  
Guangtao Zhang ◽  
...  

Background/Aims: Long noncoding RNAs (lncRNAs) are key regulators of cancer initiation and progression. In this study, we investigated the clinical value and functional role of LncRNA DQ786243 (LncDQ) in the pathogenesis of hepatocellular carcinoma (HCC). Methods: To investigate the expression level of LncDQ in HCC, we performed quantitative real-time PCR using total RNA extracted from HCC tumor tissues and their matched non-neoplastic counterparts, as well as from the serum of HCC patients and healthy volunteers. The correlation of LncDQ expression with clinicopathologic features and prognosis was analyzed. The functional role of LncDQ in cell proliferation, migration, and invasion were evaluated by MTT cell viability, wound healing, and transwell assays in vitro and in vivo. RNA immunoprecipitation and chromatin immunoprecipitation assays were performed to analyze the potential mechanism of LncDQ in HCC cells. Results: LncDQ was upregulated in both HCC tissue samples and serum and was correlated with low survival rate and adverse clinical pathological characteristics. Multivariate analysis demonstrated that LncDQ expression was an independent prognostic factor for HCC. The area under the receiver operating characteristic curve was 0.804 with a sensitivity of 0.72 and a specificity of 0.8. Knockdown of LncDQ induced inhibition of cell proliferation, migration, and invasion in vitro and in vivo. Mechanistically, LncDQ regulated the epithelial–mesenchymal transition pathway by interacting with EZH2, to epigenetically repress the expression of E-cadherin in HCC cells. Conclusions: Taken together, the results of our study indicate that LncDQ plays a critical role in HCC progression, and may serve as a potential diagnostic and prognostic biomarker for HCC.


Sign in / Sign up

Export Citation Format

Share Document