Oxidative stress and macrophage function: a failure to resolve the inflammatory response

2007 ◽  
Vol 35 (2) ◽  
pp. 284-287 ◽  
Author(s):  
P. Kirkham

The suppression of pro-inflammatory gene expression along with the clearance of apoptotic cells by phagocytosis can play an important role in resolving the inflammatory response. Any impairment of these processes can therefore lead to a chronic inflammatory state. Oxidative stress can have both direct and indirect effects on macrophage function. This mini-review highlights a mechanism through which oxidative stress via the production of reactive carbonyls alters the ECM (extracellular matrix) environment of macrophages, thereby altering their behaviour. Carbonyl modification of ECM proteins causes increased macrophage adhesion and activation through receptors that are also involved in phagocytosis. Moreover, interaction of macrophages with these carbonyl-modified ECM proteins leads to decreased phagocytic activity towards apoptotic cells. At a more direct level, both oxidative and carbonyl stress inhibits activity of the transcriptional co-repressor HDAC-2 (histone deacetylase 2), which under normoxic conditions helps to suppress pro-inflammatory gene expression. Consequently, macrophages activated under conditions of oxidative or carbonyl stress can lead to a more enhanced inflammatory response. Coupled with an impairment of the phagocytic response, this can lead to ineffective clearance of apoptotic cells and secondary necrosis, with the result being failure to resolve the inflammatory response and the establishment of a chronic inflammatory state.

FEBS Open Bio ◽  
2018 ◽  
Vol 8 (6) ◽  
pp. 914-922 ◽  
Author(s):  
Momoko Hamano ◽  
Yurina Haraguchi ◽  
Tomoko Sayano ◽  
Chong Zyao ◽  
Yashiho Arimoto ◽  
...  

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3396-3396
Author(s):  
Julia Brittain ◽  
Itia Lee ◽  
Ciprian Anea

Abstract Background: Patients with SCD tolerate a systemic pro-inflammatory vascular milieu created by chronic ischemia/reperfusion injury and profound erythrocyte hemolysis. In addition to this chronic low level inflammation, exposure to relatively innocuous, sub-clinical inflammatory stimuli appears to ignite an exaggerated, potentially fatal inflammatory response in patients. The etiology of this inflammatory hyper-reactivity is not well understood. There is ample evidence that, in steady state, a cadre of inflammatory cells, especially monocytes, exhibit a primed phenotype. Such priming, or propensity to activate, likely contributes to baseline inflammation, and is requisite for the inflated inflammatory response. Monocytes are quite unique amongst the leukocytes in that their inflammatory potential, including Il-6 release, is governed by the mammalian circadian clock. A role for the rhythmic oscillation of clock proteins as a controller of inflammation in SCD has never been demonstrated. However, a binding partner for heme, the nuclear receptor rev-erbα, is implicated as a regulator of clock controlled genes. Objective: To test the hypothesis that hemolysis, via heme-induced perturbation of the clock protein Rev-erbα, forms the basis for an enhanced inflammatory response in the monocyte. Methods: Intraperitoneal low dose lipopolysaccharide (LPS) was used to elicit an inflammatory response in the Townes mouse model of SCD. Plasma from the mice was acquired 6 hours after LPS injection. Analysis of 25 cytokines was accomplished using luminex methods. Monocytes were modeled in vitro using THP-1 cells. Simultaneous analysis of 84 induced inflammatory genes was conducted via qRT-PCR using the Qiagen RT Profiler PCR array. Inflammatory cytokine levels in cell supernatants were determined via ELISA. Results: We challenged the mice with low dose LPS (<10ng). Interrogation of the inflammatory cytokines in these mice revealed no change in any cytokine tested in the AA mice, but 20 out of 25 inflammatory cytokines were upregulated in mice with the SS genotype. The monocyte-based cytokines were clearly target of LPS activation in the SS mice. TNF-α and Il-1β were both upregulated 20 fold and 80 fold respectively in the SS mice. KC levels (the murine equivalent of Il-8) levels were increased 80 fold in the SS mice treated with LPS. Il-6 levels, however, were the most pronounced with a 40,000 fold increase over PBS injected SS mice. We then evaluated the role of hemolysis on monocyte inflammatory potential in vitro. Sustained monocyte exposure to physiological levels of heme in SCD alone could induce a low level of inflammatory gene expression and Il-6 release. However, sustained exposure to heme dramatically increased Il-6 release from the monocyte in response to LPS. Expression of the Il-6 gene was also increased, but the peak gene expression was time delayed compared to LPS treatment alone. In fact, we noted this phase shifting of inflammatory gene expression in the heme primed cells. LPS induced the release of significantly more TNF-α and Il-1β into the culture media in the presence of heme - consistent with the notion of heme setting a hyperactive threshold in response to LPS. We also noted that heme induced expression of the clock gene rev-erbα, and that antagonizing the activity of rev-erbα ablated the enhanced inflammatory response induced by LPS in the heme primed cells. Conclusion: These data provide evidence that hemolysis may play an important role in the hyper-inflammatory monocyte response via heme- induced dysregulation of the circadian clock. These novel observations provide entirely new avenues of anti-inflammatory therapy in SCD. Disclosures No relevant conflicts of interest to declare.


2016 ◽  
Vol 9 (2) ◽  
pp. 203-216 ◽  
Author(s):  
Imran H. Chowdhury ◽  
Sue-jie Koo ◽  
Shivali Gupta ◽  
Lisa Yi Liang ◽  
Bojlul Bahar ◽  
...  

Background: Chronic inflammation and oxidative stress are hallmarks of chagasic cardiomyopathy (CCM). In this study, we determined if microparticles (MPs) generated during Trypanosoma cruzi (Tc) infection carry the host's signature of the inflammatory/oxidative state and provide information regarding the progression of clinical disease. Methods: MPs were harvested from supernatants of human peripheral blood mononuclear cells in vitro incubated with Tc (control: LPS treated), plasma of seropositive humans with a clinically asymptomatic (CA) or symptomatic (CS) disease state (vs. normal/healthy [NH] controls), and plasma of mice immunized with a protective vaccine before challenge infection (control: unvaccinated/infected). Macrophages (mφs) were incubated with MPs, and we probed the gene expression profile using the inflammatory signaling cascade and cytokine/chemokine arrays, phenotypic markers of mφ activation by flow cytometry, cytokine profile by means of an ELISA and Bioplex assay, and oxidative/nitrosative stress and mitotoxicity by means of colorimetric and fluorometric assays. Results:Tc- and LPS-induced MPs stimulated proliferation, inflammatory gene expression profile, and nitric oxide (∙NO) release in human THP-1 mφs. LPS-MPs were more immunostimulatory than Tc-MPs. Endothelial cells, T lymphocytes, and mφs were the major source of MPs shed in the plasma of chagasic humans and experimentally infected mice. The CS and CA (vs. NH) MPs elicited >2-fold increase in NO and mitochondrial oxidative stress in THP-1 mφs; however, CS (vs. CA) MPs elicited a more pronounced and disease-state-specific inflammatory gene expression profile (IKBKB, NR3C1, and TIRAP vs. CCR4, EGR2, and CCL3), cytokine release (IL-2 + IFN-γ > GCSF), and surface markers of mφ activation (CD14 and CD16). The circulatory MPs of nonvaccinated/infected mice induced 7.5-fold and 40% increases in ∙NO and IFN-γ production, respectively, while these responses were abolished when RAW264.7 mφs were incubated with circulatory MPs of vaccinated/infected mice. Conclusion: Circulating MPs reflect in vivo levels of an oxidative, nitrosative, and inflammatory state, and have potential utility in evaluating disease severity and the efficacy of vaccines and drug therapies against CCM.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Paul Ravi Waldron ◽  
Mark Holodniy

Background. Inflammatory gene expression in peripheral blood mononuclear cells (PBMCs) is altered in chronic Hepatitis C Virus (HCV) infection. Duration of changes after pegylated interferon- (peg-IFN-) based HCV treatment is unclear.Methods. PBMC mRNA expression of 184 inflammatory response genes was analyzed (nCounter GX Human Inflammation Kit, Nanostring) from peg-IFN treatment nonresponders (NR,n=18), sustained virologic responders (SVR,n=22), and spontaneous clearers (SC,n=15). Logistic regression was used for comparison.Results. Median time from last treatment was 2 and 2.7 years in SVR and NR, respectively (p= NS). Mean mRNA counts were significantly different for 42 and 29 genes comparing SVR to SC patients and NR to SC, respectively, and no genes comparing SVR to NR. Differential expression of 24 genes was significantly different in both SVR and NR groups compared to SC. Among these 24 acute and chronic inflammatory cascade genes, significant upregulation was noted for proinflammatory transcription regulatorsFos,CEBPB, andMyD88in SVR and NR compared to SC.HDAC4was significantly downregulated in SVR and NR compared to the SC group.Conclusions. PBMC inflammatory gene expression patterns in SVR resemble NR more than SC patients. A generalized inflammatory response persists in PBMCs long after successful peg-IFN treatment for HCV infection.


2009 ◽  
Vol 296 (4) ◽  
pp. H946-H956 ◽  
Author(s):  
Nazar Labinskyy ◽  
Partha Mukhopadhyay ◽  
Janos Toth ◽  
Gabor Szalai ◽  
Monika Veres ◽  
...  

Vascular aging is characterized by increased oxidative stress and proinflammatory phenotypic alterations. Metabolic stress, such as hyperglycemia in diabetes, is known to increase the production of ROS and promote inflammatory gene expression, accelerating vascular aging. The oxidative stress hypothesis of aging predicts that vascular cells of long-lived species exhibit lower steady-state production of ROS and/or superior resistance to the prooxidant effects of metabolic stress. We tested this hypothesis using two taxonomically related rodents, the white-footed mouse ( Peromyscus leucopus) and the house mouse ( Mus musculus), which show a more than twofold difference in maximum lifespan potential (8.2 and 3.5 yr, respectively). We compared interspecies differences in steady-state and high glucose (HG; 30 mmol/l)-induced production of O2•− and H2O2, endothelial function, mitochondrial ROS generation, and inflammatory gene expression in cultured aortic segments. In P. leucopus aortas, steady-state endothelial O2•− and H2O2 production and ROS generation by mitochondria were less than in M. musculus vessels. Furthermore, vessels of P. leucopus were more resistant to the prooxidant effects of HG. Primary fibroblasts from P. leucopus also exhibited less steady-state and HG-induced ROS production than M. musculus cells. In M. musculus arteries, HG elicited significant upregulation of inflammatory markers (TNF-α, IL-6, ICAM-1, VCAM, and monocyte chemoattractant protein-1). In contrast, the proinflammatory effects of HG were blunted in P. leucopus vessels. Thus, increased life span potential in P. leucopus is associated with decreased cellular ROS generation and increased resistance to prooxidant and proinflammatory effects of metabolic stress, which accord with predictions of the oxidative stress hypothesis of aging.


2019 ◽  
Vol 8 (2) ◽  
pp. 262-269 ◽  
Author(s):  
Ulas Acaroz ◽  
Sinan Ince ◽  
Damla Arslan-Acaroz ◽  
Zeki Gurler ◽  
Hasan Huseyin Demirel ◽  
...  

Boron reversed Bisphenol-A induced alterations.


Sign in / Sign up

Export Citation Format

Share Document