Hijacking cellular functions for processing and delivery of colicins E3 and D into the cytoplasm

2012 ◽  
Vol 40 (6) ◽  
pp. 1486-1491 ◽  
Author(s):  
Miklos de Zamaroczy ◽  
Liliana Mora

The mechanisms for importing colicins from the extracellular medium into Escherichia coli target cells implicate a complex cascade of interactions with host proteins. It is known that colicins interact with membrane receptors, and they may appropriate them structurally, but not functionally, as a scaffold on the surface of the target cell so that they can be translocated across the outer membrane. During the import into the periplasm, colicins parasitize functionally membrane porins and energy-transducers by mimicking their natural substrates or interacting partners. Such structural or functional parasitism also takes place during the late molecular events responsible for the processing and translocation of nuclease colicins across the inner membrane. Two different RNase colicins (D and E3) require an endoproteolytic cleavage, dependent on the inner membrane ATPase/protease FtsH, in order to transfer their C-terminal toxic domain into the cytoplasm. Moreover, the processing of colicin D necessitates a specific interaction with the signal peptidase LepB, but without appropriating the catalytic activity of this enzyme. A comparison of the differences in structural and functional organizations of these two colicins, as well as the pore-forming colicin B, is discussed in the present paper in connection with the sequential steps of their import mechanisms and the exploitation of the machinery of the target cell.

2018 ◽  
Author(s):  
Patricia Lara ◽  
Åsa Tellgren-Roth ◽  
Hourinaz Behesti ◽  
Zachi Horn ◽  
Nina Schiller ◽  
...  

Astrotactins 1 (Astn1) and Astn2 are membrane proteins that function in glial-guided migration, receptor trafficking and synaptic plasticity in the brain, as well as in planar polarity pathways in skin. Here, we used glycosylation mapping and protease-protection approaches to map the topologies of mouse Astn1 and Astn2 in rough microsomal membranes (RMs), and found that Astn2 has a cleaved N-terminal signal peptide (SP), an N-terminal domain located in the lumen of the RMs (topologically equivalent to the extracellular surface in cells), two transmembrane helices (TMHs), and a large C-terminal lumenal domain. We also found that Astn1 has the same topology as Astn2, but we did not observe any evidence of SP cleavage in Astn1. Both Astn1 and Astn2 mature through endoproteolytic cleavage in the second TMH; importantly, we identified the endoprotease responsible for the maturation of Astn1 and Astn2 as the endoplasmic reticulum signal peptidase. Differences in the degree of Astn1 and Astn2 maturation possibly contribute to the higher levels of the C-terminal domain of Astn1 detected on neuronal membranes of the central nervous system. These differences may also explain the distinct cellular functions of Astn1 and Astn2, such as in membrane adhesion, receptor trafficking, and planar polarity signaling.


1995 ◽  
Vol 182 (3) ◽  
pp. 875-884 ◽  
Author(s):  
A Moretta ◽  
S Sivori ◽  
M Vitale ◽  
D Pende ◽  
L Morelli ◽  
...  

The natural killer (NK) cell-specific p58 molecules EB6 and GL183 have been shown to represent the putative surface receptors for two distinct groups of human histocompatibility leukocyte antigen (HLA) C alleles. Interaction between p58 receptors and class I molecules expressed on target cells results in inhibition of the NK-mediated cytolytic activity and thus in target cell protection. In the present study, we show that EB6 molecules may also act as receptors mediating NK cell triggering. Activatory EB6 molecules were found to be confined only to certain donors. Moreover, in these donors, only a fraction of EB6+ NK clones expressed the activatory form of EB6 molecules, while the remaining clones expressed the conventional inhibitory form. Biochemical analysis of the activatory EB6 molecules revealed a molecular mass of approximately 50 kD (p50), thus differing from the 58-kD inhibitory form. This difference was not due to differential glycosylation of the same protein, as revealed by deglycosylation experiments of isolated EB6 molecules. Treatment of purified p58 or p50/EB6 molecules with proteolytic enzymes, including V8-protease, chymotrypsin, and papain, showed only minor differences in the resulting peptides. Treatment with pepsin followed by two-dimensional peptide mapping demonstrated that, although the majority of peptides migrated in identical positions, differences between the two forms could be detected for at least one major peptide. Anti-EB6 monoclonal antibody (mAb)-mediated cross-linking of p50 molecules was required to trigger the cytolytic activity and the intracellular calcium ([Ca+2]i) increases in appropriate NK clones. Likewise, mAb-mediated cross linking of the p58 EB6 molecules was needed to inhibit the cytolytic activity; however, in this case, no [Ca+2]i increases could be detected. In NK clones expressing the inhibitory p58 EB6 receptors, soluble anti-EB6 mAb prevented recognition of protective Cw4 molecules and reconstituted target cell lysis. In contrast, in clones expressing the activatory p50/EB6 receptor, EB6 masking frequently resulted in partial inhibition of the cytolytic activity against Cw4+ target cells. Therefore, it appears that NK clones expressing the p50/EB6 receptors are induced to lyse Cw4+ target cells upon specific interaction with Cw4 molecules. This concept was further substantiated by experiments in which target cells were represented by the HLA-negative LCL721.221 cell line transfected with the Cw4 allele. Phenotypic and functional analysis of a large number of NK clones showed that clones expressing the activatory p50/EB6 molecules consistently coexpressed inhibitory receptors for other HLA class I alleles.(ABSTRACT TRUNCATED AT 400 WORDS)


2015 ◽  
Vol 112 (36) ◽  
pp. 11341-11346 ◽  
Author(s):  
Julia L. E. Willett ◽  
Grant C. Gucinski ◽  
Jackson P. Fatherree ◽  
David A. Low ◽  
Christopher S. Hayes

Contact-dependent growth inhibition (CDI) systems function to deliver toxins into neighboring bacterial cells. CDI+ bacteria export filamentous CdiA effector proteins, which extend from the inhibitor-cell surface to interact with receptors on neighboring target bacteria. Upon binding its receptor, CdiA delivers a toxin derived from its C-terminal region. CdiA C-terminal (CdiA-CT) sequences are highly variable between bacteria, reflecting the multitude of CDI toxin activities. Here, we show that several CdiA-CT regions are composed of two domains, each with a distinct function during CDI. The C-terminal domain typically possesses toxic nuclease activity, whereas the N-terminal domain appears to control toxin transport into target bacteria. Using genetic approaches, we identified ptsG, metI, rbsC, gltK/gltJ, yciB, and ftsH mutations that confer resistance to specific CdiA-CTs. The resistance mutations all disrupt expression of inner-membrane proteins, suggesting that these proteins are exploited for toxin entry into target cells. Moreover, each mutation only protects against inhibition by a subset of CdiA-CTs that share similar N-terminal domains. We propose that, following delivery of CdiA-CTs into the periplasm, the N-terminal domains bind specific inner-membrane receptors for subsequent translocation into the cytoplasm. In accord with this model, we find that CDI nuclease domains are modular payloads that can be redirected through different import pathways when fused to heterologous N-terminal “translocation domains.” These results highlight the plasticity of CDI toxin delivery and suggest that the underlying translocation mechanisms could be harnessed to deliver other antimicrobial agents into Gram-negative bacteria.


Author(s):  
K. E. Muse ◽  
D. G. Fischer ◽  
H. S. Koren

Mononuclear phagocytes, a pluripotential cell line, manifest an array of basic extracellular functions. Among these physiological regulatory functions is the expression of spontaneous cytolytic potential against tumor cell targets.The limited observations on human cells, almost exclusively blood monocytes, initially reported limited or a lack of tumoricidal activity in the absence of antibody. More recently, freshly obtained monocytes have been reported to spontaneously impair the biability of tumor target cells in vitro (Harowitz et al., 1979; Montavani et al., 1979; Hammerstrom, 1979). Although the mechanism by which effector cells express cytotoxicity is poorly understood, discrete steps can be distinguished in the process of cell mediated cytotoxicity: recognition and binding of effector to target cells,a lethal-hit stage, and subsequent lysis of the target cell. Other important parameters in monocyte-mediated cytotoxicity include, activated state of the monocyte, effector cell concentrations, and target cell suseptibility. However, limited information is available with regard to the ultrastructural changes accompanying monocyte-mediated cytotoxicity.


Author(s):  
D. L. Taylor

Cells function through the complex temporal and spatial interplay of ions, metabolites, macromolecules and macromolecular assemblies. Biochemical approaches allow the investigator to define the components and the solution chemical reactions that might be involved in cellular functions. Static structural methods can yield information concerning the 2- and 3-D organization of known and unknown cellular constituents. Genetic and molecular techniques are powerful approaches that can alter specific functions through the manipulation of gene products and thus identify necessary components and sequences of molecular events. However, full knowledge of the mechanism of particular cell functions will require direct measurement of the interplay of cellular constituents. Therefore, there has been a need to develop methods that can yield chemical and molecular information in time and space in living cells, while allowing the integration of information from biochemical, molecular and genetic approaches at the cellular level.


2020 ◽  
Vol 18 (1) ◽  
pp. 265-274
Author(s):  
Wei-hong Chen ◽  
Zhen Luo ◽  
Zi-Wan Ning ◽  
Jiao Peng ◽  
Xiao-peng Hu ◽  
...  

AbstractExtracts of Cyclocarya paliurus (CP) leaves, a popular sweet tea, inhibit pancreatic β cell apoptosis and have potent hypoglycemic effects, but the identities of the anti-apoptotic bioactive components are still unknown. In the present study, a method using UPLC-Q-TOF/MS based on serum pharmacochemistry combined with target cell extraction was established to rapidly identify direct-acting pancreatic protectants from CP. After orally administering a set amount of CP extract to rats, blood samples were collected to characterize the components that can be absorbed into the blood using UPLC-Q-TOF/MS. Also, target cells (pancreatic β NIT-1 cells) were incubated with CP extract for 24 hours, and cells were collected to identify the components that can bind to the cells using UPLC-Q-TOF/MS. Finally, to evaluate the protective effect of the bioactive components of CP, MTT and TUNEL assays were performed on treated NIT-1 cell induced by streptozotocin (STZ). Three potential direct-acting pancreatic protectants -- kaempferol, quercetin, quadranoside IV -- were identified, and anti-apoptotic effects of kaempferol and quercetin were confirmed in STZ-induced NIT-1 cells. The findings indicate that this combined approach is a feasible, rapid, and expedient tool for capturing potential direct-acting components from natural products such as those from CP leaves.


2021 ◽  
Vol 22 (13) ◽  
pp. 6670
Author(s):  
Eva Prašnikar ◽  
Andrej Perdih ◽  
Jure Borišek

The innate immune system’s natural killer (NK) cells exert their cytolytic function against a variety of pathological challenges, including tumors and virally infected cells. Their activation depends on net signaling mediated via inhibitory and activating receptors that interact with specific ligands displayed on the surfaces of target cells. The CD94/NKG2C heterodimer is one of the NK activating receptors and performs its function by interacting with the trimeric ligand comprised of the HLA-E/β2m/nonameric peptide complex. Here, simulations of the all-atom multi-microsecond molecular dynamics in five immune complexes provide atomistic insights into the receptor–ligand molecular recognition, as well as the molecular events that facilitate the NK cell activation. We identify NKG2C, the HLA-Eα2 domain, and the nonameric peptide as the key elements involved in the molecular machinery of signal transduction via an intertwined hydrogen bond network. Overall, the study addresses the complex intricacies that are necessary to understand the mechanisms of the innate immune system.


1979 ◽  
Vol 150 (6) ◽  
pp. 1310-1322 ◽  
Author(s):  
M Lipinski ◽  
W H Fridman ◽  
T Tursz ◽  
C Vincent ◽  
D Pious ◽  
...  

Peripheral T lymphocytes from patients with infectious mononucleosis (IM) are sensitized in vivo against the Epstein-Barr virus (EBV). The expression of HLA-A, B, or C molecules at the target cell surface is necessary for the cytotoxic reaction because (a) EBV-positive Daudi cells lacking HLA-A, B, and C determinants are resistant to anti-EBV T-cell lysis, (b) cytolysis of EBV-positive target cells can be consistently inhibited by anti-HLA-A, B, and C and anti-beta 2 microglobulin antibodies. However, no evidence for allogeneic restriction in this system was apparent as (a) cytotoxic T lymphocytes (CTL) from one given individual could exert a cytotoxicity of a similar magnitude on different EBV-positive target cells, regardless of the number of HLA-A or B specificities shared by the effectors and targets; (b) CTL from IM patients were able to kill target cells without any HLA-A or B antigen in common; and (c) T5-1 variants lacking one or two HLA antigens at the A, B, or D locus are killed to the same extent as the parental cells. 7 of the 9 IM patients with detectable circulating anti-EBV CTL carried the HLA-A1 antigen, whereas none of the 16 IM patients lacking detectable peripheral CTL were HLA-A1 positive (mean specific lysis of T5-1 target cells by T cells from HLA-A1 positive patients: 29.3 vs. 0.6% in HLA-A1-negative patients) (P less than 10(-9)). These data suggest an HLA-A1-linked gene control of the magnitude of the anti-EBV CTL response. Thus, the HLA region appears to act at two different level sin the T-cell-mediated lysis of EBV-infected cells by controlling first, the development of anti-EBV and second, the expression of HLA-A, B, and C molecules involved as recognition structures at the target cell surface.


1976 ◽  
Vol 143 (3) ◽  
pp. 601-614 ◽  
Author(s):  
J W Schrader ◽  
G M Edelman

Cytotoxic T lymphocytes were generated in vitro against H-2 compatible or syngeneic tumor cells. In vitro cytotoxic activity was inhibited by specific anti-H2 sera, suggesting that H-2 antigens are involved in cell lysis. Two observations directly demonstrated the participation of the H-2 antigens on the tumor cells in their lysis by H-2-compatible T cells. First, coating of the H-2 antigens on the target tumor cell reduced the number of cells lysed on subsequent exposure to cytotoxic T cells. Second, when cytotoxic T cells were activated against an H-2 compatible tumor and assayed against an H-2-incompatible tumor, anti-H-2 serum that could bind to the target cell, but not to the cytotoxic lymphocyte, inhibited lysis. H-2 antigens were also shown to be present on the cytotoxic lymphocytes. Specific antisera reacting with these H-2 antigens, but not those of the target cell, failed to inhibit lysis when small numbers of effector cells were assayed against H-2-incompatible target cells or when effector cells of F1-hybrid origin and bearing two H-2 haplotypes were assayed against a tumor cell of one of the parental strains. These findings suggest that it is the H-2 antigens on the tumor cell and not those on the cytotoxic lymphocytes that are important in cell-mediated lysis of H-2-compatible tumor cells.


2018 ◽  
Vol 93 (2) ◽  
Author(s):  
Romain Appourchaux ◽  
Mathilde Delpeuch ◽  
Li Zhong ◽  
Julien Burlaud-Gaillard ◽  
Kevin Tartour ◽  
...  

ABSTRACT The interferon-induced transmembrane proteins (IFITMs) are a family of highly related antiviral factors that affect numerous viruses at two steps: in target cells by sequestering incoming viruses in endosomes and in producing cells by leading to the production of virions that package IFITMs and exhibit decreased infectivity. While most studies have focused on the former, little is known about the regulation of the negative imprinting of virion particle infectivity by IFITMs and about its relationship with target cell protection. Using a panel of IFITM3 mutants against HIV-1, we have explored these issues as well as others related to the biology of IFITM3, in particular virion packaging, stability, the relation to CD63/multivesicular bodies (MVBs), the modulation of cholesterol levels, and the relationship between negative imprinting of virions and target cell protection. The results that we have obtained exclude a role for cholesterol and indicate that CD63 accumulation does not directly relate to an antiviral behavior. We have defined regions that modulate the two antiviral properties of IFITM3 as well as novel domains that modulate protein stability and that, in so doing, influence the extent of its packaging into virions. The results that we have obtained, however, indicate that, even in the context of an IFITM-susceptible virus, IFITM3 packaging is not sufficient for negative imprinting. Finally, while most mutations concomitantly affect target cell protection and negative imprinting, a region in the C-terminal domain (CTD) exhibits a differential behavior, potentially highlighting the regulatory role that this domain may play in the two antiviral activities of IFITM3. IMPORTANCE IFITM proteins have been associated with the sequestration of incoming virions in endosomes (target cell protection) and with the production of virion particles that incorporate IFITMs and exhibit decreased infectivity (negative imprinting of virion infectivity). How the latter is regulated and whether these two antiviral properties are related remain unknown. By examining the behavior of a large panel of IFITM3 mutants against HIV-1, we determined that IFITM3 mutants are essentially packaged into virions proportionally to their intracellular levels of expression. However, even in the context of an IFITM-susceptible virus, IFITM3 packaging is not sufficient for the antiviral effects. Most mutations were found to concomitantly affect both antiviral properties of IFITM3, but one CTD mutant exhibited a divergent behavior, possibly highlighting a novel regulatory role for this domain. These findings thus advance our comprehension of how this class of broad antiviral restriction factors acts.


Sign in / Sign up

Export Citation Format

Share Document