Selective mRNA translation in erythropoiesis

2015 ◽  
Vol 43 (3) ◽  
pp. 343-347 ◽  
Author(s):  
Klaske A.M.H. Thiadens ◽  
Marieke von Lindern

The daily production of up to 1011 erythrocytes is tightly controlled to maintain the number of erythrocytes in peripheral blood between narrow boundaries. Availability of growth factors and nutrients, particularly iron, control the proliferation and survival of precursor cells partly through control of mRNA translation. General translation initiation mechanisms can selectively control translation of transcripts that carry specific structures in the UTRs. This selective mRNA translation is an important layer of gene expression regulation in erythropoiesis. Ribosome profiling is a recently developed high throughput sequencing technique for global mapping of translation initiation sites across the transcriptome. Here we describe what is known about control of mRNA translation in erythropoiesis and how ribosome profiling will help to further our knowledge. Ribosome footprinting will give insight in transcript-specific translation at codon resolution, which is of great value to understand many cellular processes during erythropoiesis. It will be of particular interest to understand responses to iron availability and reactive oxygen species (ROS), which affects translation initiation of transcripts harbouring upstream ORFs (uORF) and potential alternative downstream ORFs (aORF).

2020 ◽  
Vol 48 (17) ◽  
pp. 9478-9490
Author(s):  
Juraj Szavits-Nossan ◽  
Luca Ciandrini

Abstract One of the main goals of ribosome profiling is to quantify the rate of protein synthesis at the level of translation. Here, we develop a method for inferring translation elongation kinetics from ribosome profiling data using recent advances in mathematical modelling of mRNA translation. Our method distinguishes between the elongation rate intrinsic to the ribosome’s stepping cycle and the actual elongation rate that takes into account ribosome interference. This distinction allows us to quantify the extent of ribosomal collisions along the transcript and identify individual codons where ribosomal collisions are likely. When examining ribosome profiling in yeast, we observe that translation initiation and elongation are close to their optima and traffic is minimized at the beginning of the transcript to favour ribosome recruitment. However, we find many individual sites of congestion along the mRNAs where the probability of ribosome interference can reach $50\%$. Our work provides new measures of translation initiation and elongation efficiencies, emphasizing the importance of rating these two stages of translation separately.


2021 ◽  
Author(s):  
S Subramaniam ◽  
N Shahani

AbstractHuntington disease (HD) is caused by an expanded polyglutamine mutation in huntingtin (mHTT), which promotes a prominent atrophy in the striatum and subsequent psychiatric, cognitive, and choreiform movements. Multiple lines of evidence point to an association between HD and aberrant striatal mitochondrial functions. However, present knowledge about whether (or how) mitochondrial mRNA translation is differentially regulated in HD remains unclear. We have recently applied ribosome profiling (Ribo-Seq), a technique based on the high-throughput sequencing of ribosome-protected mRNA fragments, to analyze detailed snapshots of ribosome occupancy of the mitochondrial mRNA transcripts in control and HD striatal cells. Ribo-seq data revealed almost unaltered ribosome occupancy on the nuclear-encoded mitochondrial transcripts involved in oxidative phosphorylation (OXPHOS) and only a mild reduction in ribosome occupancy on a few selected transcripts (SHDA, Ndufv1, Timm23, Tomm5, and Mrps22) in HD cells. By contrast, ribosome occupancy of mitochondrially encoded OXPHOS mRNAs (mtNd-1, mtNd-2, mtNd-4, mtNd-4l, mtNd-5, mtNd-6, mt-Co1, mtCyt b, and mt-ATP8) was dramatically increased, implying widespread dichotomous effects on ribosome occupancy and OXPHOS mRNA translation in HD. Thus, mHTT may command signals that specifically regulate translation of the mitochondrial OXPHOS transcripts and influence HD pathogenesis.


2017 ◽  
Author(s):  
Nahuel A. Paolini ◽  
Kat S. Moore ◽  
Franca M. di Summa ◽  
Ivo F.A.C. Fokkema ◽  
Peter A.C. ‘t Hoen ◽  
...  

AbstractThe regulation of translation initiation factor 2 (eIF2) is important for erythroid survival and differentiation. Lack of iron, a critical component of heme and hemoglobin, activates Heme Regulated Inhibitor (HRI). This results in phosphorylation of eIF2 and reduced eIF2 availability, which inhibits protein synthesis. Translation of specific transcripts such as Atf4, however, is enhanced. Upstream open reading frames (uORFs) are key to this regulation. The aim of this study is to investigate how eIF2 phosphorylation affects mRNA translation in erythroblasts. Ribosome profiling combined with RNA sequencing was used to determine translation initiation sites and ribosome density on individual transcripts. Treatment of erythroblasts with Tunicamycin (Tm) increased phosphorylation of eIF2 2-fold. At a false discovery rate of 1%, ribosome density was increased for 147 transcripts, among which transcriptional regulators such as Atf4, Tis7/Ifrd1, Pnrc2, Gtf2h, Mbd3, JunB and Kmt2e. Translation of 337 transcripts decreased more than average, among which Dym and Csde1. Ribosome profiling following Harringtonine treatment uncovered novel translation initiation sites and uORFs. Surprisingly, translated uORFs did not predict eIF2-dependent translation efficiency, but uORF identity differs. The regulation of transcription and translation factors in reponse to eIF2 phosphorylation may explain the large overall response to iron deficiency in erythroblasts.- eif2 dependent translation in erythroblasts during proteotoxic stress determined by ribosome footprinting- identification of transcription factors upregulated in response to eIF2 phosphorylation- Advantages and disadvantages of translation initiation site determination using harringtonine- distinct uORF pattern in transcripts with enhanced, or more than average reduced translation upon proteotoxic stress


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2658-2658
Author(s):  
Klaske A.M.H. Thiadens ◽  
Eleonora de Klerk ◽  
Ivo F.A.C. Fokkema ◽  
Peter A.C. ‘t Hoen ◽  
Marieke von Lindern

Abstract The erythroid progenitor compartment possesses a large expansion capacity, both in vivo and in vitro, which enables a rapid restoration of peripheral erythrocytes following severe blood loss. This expansion is tightly regulated to maintain erythrocyte numbers between narrow boundaries, and to balance expansion of the erythroid compartment against the availability of iron for heme and haemoglobin production. We previously observed that control of mRNA translation is crucial for expansion of the erythroid compartment. We also showed that translation of specific transcripts is impaired in Diamond Blackfan Anemia (DBA), a severe congenital anemia due to defective ribosome biosynthesis. Transcripts can be subject to translational control through domains in the 5’- or 3’UTR, including secondary structures, protein binding sequences and upstream open reading frames (uORFs). The presence of uORFs, including those starting at non-AUG codons in the 5’UTR, may alter the level of mRNA translation, but may also result in the expression of alternative protein isoforms because translation initiation may be redirected to more downstream start codons. The aim of our current studies is to provide a genome wide map of mRNA translation efficiency during erythropoiesis that can be used to investigate defective mRNA translation in, for instance, DBA. Ribosome profiling is a genome wide high-throughput sequencing technology for global mapping of translation initiation sites that allows translation analysis with codon resolution at the genome wide level. We first investigated translational changes occurring during differentiation of mouse erythroblasts. We used p53-deficient, growth factor dependent and differentiation competent immortalized erythroblast cultures that were expanded in presence of erythropoietin (Epo), stem cell factor (SCF) and glucocorticoids as T0, and subsequently differentiated the cells in presence of Epo for 17 and 46 hours (T17, and T46 samples). To obtain ribosome footprints, the cells were treated for 7 minutes with harringtonin or solvent, and subsequently for 5 minutes with cycloheximide, which arrests translation by stabilizing the ribosomes at translation initiation codons, or on all codons, respectively. We used optimized protocols for ribosome footprinting and data analysis, and focused the analysis on transcripts containing uORFs. First we performed a qualitative analysis of start codon usage. The ribosome footprint data proved to be superior to previously used polyribosome recruitment. In some cases polysome recruitment appeared to represent translation of an uORFs while the protein coding ORF is hardly translated (e.g. Csf2rb2, Puma). In another set of transcripts, we found uORFs that are differentially translated during differentiation, and thereby regulate differential translation from a downstream start codon (e.g. Klf3, Use1, CD47, Kell). Finally, comparison of ribosome footprints determined in erythroblasts and in myoblasts/myotubes revealed tissue specific translation regulation of otherwise ubiquitously expressed transcripts among which transcripts encoding ribosomal proteins. Second, we will perform quantitative analysis of mRNA translation in erythropoiesis through the comparison of ribosome footprint reads in an ORF with total mRNA reads obtained from total mRNA sequencing of the same sample. The obtained insight in transcript specific translation at codon resolution is of great value to understand many cellular processes during erythropoiesis, and will be of particular interest to understand responses to iron availability and reactive oxygen species that particularly affect translation of transcripts harboring uORFs. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Author(s):  
Juraj Szavits-Nossan ◽  
Luca Ciandrini

ABSTRACTOne of the main goals of ribosome profiling is to quantify the rate of protein synthesis at the level of translation. Here, we develop a method for inferring translation elongation kinetics from ribosome profiling data using recent advances in the mathematical modelling of mRNA translation. Our method distinguishes between the elongation rate intrinsic to the ribosome’s stepping cycle and the actual elongation rate that takes into account ribosome interference. This distinction allows us to quantify the extent of ribosomal collisions along the transcript and identify individual codons where ribosomal collisions are likely. When examining ribosome profiling in yeast, we observe that translation initiation and elongation are close to their optima, and traffic is minimised at the beginning of the transcript to favour ribosome recruitment. However, we find many individual sites of congestion along the mRNAs where the probability of ribosome interference can reach 50%. Our work provides new measures of translation initiation and elongation efficiencies, emphasising the importance of rating these two stages of translation separately.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Alfonso Muñoz ◽  
M. Mar Castellano

For years, the study of gene expression regulation of plants in response to stress conditions has been focused mainly on the analysis of transcriptional changes. However, the knowledge on translational regulation is very scarce in these organisms, despite in plants, as in the rest of the eukaryotes, translational regulation has been proven to play a pivotal role in the response to different stresses. Regulation of protein synthesis under abiotic stress was thought to be a conserved process, since, in general, both the translation factors and the translation process are basically similar in eukaryotes. However, this conservation is not so clear in plants as the knowledge of the mechanisms that control translation is very poor. Indeed, some of the basic regulators of translation initiation, well characterised in other systems, are still to be identified in plants. In this paper we will focus on both the regulation of different initiation factors and the mechanisms that cellular mRNAs use to bypass the translational repression established under abiotic stresses. For this purpose, we will review the knowledge from different eukaryotes but paying special attention to the information that has been recently published in plants.


2017 ◽  
Author(s):  
James D. Warner ◽  
Mandi Wiley ◽  
Ying-Y Wu ◽  
Feng Wen ◽  
Michael Kinter ◽  
...  

ABSTRACTInterferon Regulatory Factor 5 (IRF5) plays an important role in limiting pathogenic infection and tumor development. Host protection by IRF5 can occur through a variety of mechanisms including production of type I interferon and cytokines as well as the regulation of cell survival, growth, proliferation, and differentiation. While modulation of these cellular processes is attributed to IRF5 transcription factor function in the nucleus, emerging evidence suggests that IRF5 may also retain non-transcriptional regulatory properties within the cytoplasmic compartment. Consistent with this notion, we report the ability of IRF5 to control gene expression at the level of mRNA translation. Our findings demonstrate that IRF5 interacts with the translation initiation complex in the absence of the m7GTP cap-binding protein, eIF4E. We observed that under nutrient deprivation-induced cell stress, IRF5 promoted mRNA translation of the master integrated stress response (ISR) regulator, Activating Transcription Factor 4 (ATF4). Enhanced ATF4 protein expression correlated with increased levels of downstream target genes including CHOP and GADD34 and was associated with amplification of eIF2α de-phosphorylation and translational de-repression under stress. The novel mechanism we describe broadens our understanding of how IRF5 regulates gene expression and may govern diverse cellular processes in the absence of stimuli that trigger IRF5 nuclear translocation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kyle A. Cottrell ◽  
Ryan C. Chiou ◽  
Jason D. Weber

AbstractTumor cells require nominal increases in protein synthesis in order to maintain high proliferation rates. As such, tumor cells must acquire enhanced ribosome production. How the numerous mutations in tumor cells ultimately achieve this aberrant production is largely unknown. The gene encoding ARF is the most commonly deleted gene in human cancer. ARF plays a significant role in regulating ribosomal RNA synthesis and processing, ribosome export into the cytoplasm, and global protein synthesis. Utilizing ribosome profiling, we show that ARF is a major suppressor of 5′-terminal oligopyrimidine mRNA translation. Genes with increased translational efficiency following loss of ARF include many ribosomal proteins and translation factors. Knockout of p53 largely phenocopies ARF loss, with increased protein synthesis and expression of 5′-TOP encoded proteins. The 5′-TOP regulators eIF4G1 and LARP1 are upregulated in Arf- and p53-null cells.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Marcin Luzarowski ◽  
Rubén Vicente ◽  
Andrei Kiselev ◽  
Mateusz Wagner ◽  
Dennis Schlossarek ◽  
...  

AbstractProtein–metabolite interactions are of crucial importance for all cellular processes but remain understudied. Here, we applied a biochemical approach named PROMIS, to address the complexity of the protein–small molecule interactome in the model yeast Saccharomyces cerevisiae. By doing so, we provide a unique dataset, which can be queried for interactions between 74 small molecules and 3982 proteins using a user-friendly interface available at https://promis.mpimp-golm.mpg.de/yeastpmi/. By interpolating PROMIS with the list of predicted protein–metabolite interactions, we provided experimental validation for 225 binding events. Remarkably, of the 74 small molecules co-eluting with proteins, 36 were proteogenic dipeptides. Targeted analysis of a representative dipeptide, Ser-Leu, revealed numerous protein interactors comprising chaperones, proteasomal subunits, and metabolic enzymes. We could further demonstrate that Ser-Leu binding increases activity of a glycolytic enzyme phosphoglycerate kinase (Pgk1). Consistent with the binding analysis, Ser-Leu supplementation leads to the acute metabolic changes and delays timing of a diauxic shift. Supported by the dipeptide accumulation analysis our work attests to the role of Ser-Leu as a metabolic regulator at the interface of protein degradation and central metabolism.


2021 ◽  
Vol 14 (668) ◽  
pp. eabc5429
Author(s):  
Mauricio M. Oliveira ◽  
Mychael V. Lourenco ◽  
Francesco Longo ◽  
Nicole P. Kasica ◽  
Wenzhong Yang ◽  
...  

Neuronal protein synthesis is essential for long-term memory consolidation, and its dysregulation is implicated in various neurodegenerative disorders, including Alzheimer’s disease (AD). Cellular stress triggers the activation of protein kinases that converge on the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), which attenuates mRNA translation. This translational inhibition is one aspect of the integrated stress response (ISR). We found that postmortem brain tissue from AD patients showed increased phosphorylation of eIF2α and reduced abundance of eIF2B, another key component of the translation initiation complex. Systemic administration of the small-molecule compound ISRIB (which blocks the ISR downstream of phosphorylated eIF2α) rescued protein synthesis in the hippocampus, measures of synaptic plasticity, and performance on memory-associated behavior tests in wild-type mice cotreated with salubrinal (which inhibits translation by inducing eIF2α phosphorylation) and in both β-amyloid-treated and transgenic AD model mice. Thus, attenuating the ISR downstream of phosphorylated eIF2α may restore hippocampal protein synthesis and delay cognitive decline in AD patients.


Sign in / Sign up

Export Citation Format

Share Document