scholarly journals O-Linked β-N-acetylglucosamine (O-GlcNAc) modification: a new pathway to decode pathogenesis of diabetic retinopathy

2018 ◽  
Vol 132 (2) ◽  
pp. 185-198 ◽  
Author(s):  
Zafer Gurel ◽  
Nader Sheibani

The incidence of diabetes continues to rise among all ages and ethnic groups worldwide. Diabetic retinopathy (DR) is a complication of diabetes that affects the retinal neurovasculature causing serious vision problems, including blindness. Its pathogenesis and severity is directly linked to the chronic exposure to high glucose conditions. No treatments are currently available to stop the development and progression of DR. To develop new and effective therapeutic approaches, it is critical to better understand how hyperglycemia contributes to the pathogenesis of DR at the cellular and molecular levels. We propose alterations in O-GlcNAc modification of target proteins during diabetes contribute to the development and progression of DR. The O-GlcNAc modification is regulated through hexosamine biosynthetic pathway. We showed this pathway is differentially activated in various retinal vascular cells under high glucose conditions perhaps due to their selective metabolic activity. O-GlcNAc modification can alter protein stability, activity, interactions, and localization. By targeting the same amino acid residues (serine and threonine) as phosphorylation, O-GlcNAc modification can either compete or cooperate with phosphorylation. Here we will summarize the effects of hyperglycemia-induced O-GlcNAc modification on the retinal neurovasculature in a cell-specific manner, providing new insight into the role of O-GlcNAc modification in early loss of retinal pericytes and the pathogenesis of DR.

2016 ◽  
Vol 2016 ◽  
pp. 1-11
Author(s):  
Jian Gao ◽  
Xia Chen ◽  
Qing Gu ◽  
Xiaoxiao Liu ◽  
Xun Xu

Pericyte loss is an early characteristic change in diabetic retinopathy, but its precise molecular mechanisms have not been elucidated. This study investigated the role of SENP1 in pericyte loss in diabetic retinopathy. We demonstrated that a high concentration of glucose inhibited the expression of the Sentrin/SUMO-specific protease 1 (SENP1), which resulted in an increase in DBC1 sumoylation in bovine retinal pericytes (BRPCs). Furthermore, SENP1 overexpression attenuated hyperemia-induced apoptosis of BPRCs, and SENP1 knockdown aggravated this effect. We also provide evidence that DBC1 sumoylation/desumoylation is involved in the SENP1-regulated apoptosis of BRPCs under high glucose conditions. Understanding the role of SENP1 in the pathogenesis of high glucose induced pericyte loss could help elucidate important targets for future pharmacological interventions.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 767
Author(s):  
Kamar Hamade ◽  
Ophélie Fliniaux ◽  
Jean-Xavier Fontaine ◽  
Roland Molinié ◽  
Elvis Otogo Nnang ◽  
...  

Lignans, phenolic plant secondary metabolites, are derived from the phenylpropanoid biosynthetic pathway. Although, being investigated for their health benefits in terms of antioxidant, antitumor, anti-inflammatory and antiviral properties, the role of these molecules in plants remains incompletely elucidated; a potential role in stress response mechanisms has been, however, proposed. In this study, a non-targeted metabolomic analysis of the roots, stems, and leaves of wild-type and PLR1-RNAi transgenic flax, devoid of (+) secoisolariciresinol diglucoside ((+) SDG)—the main flaxseed lignan, was performed using 1H-NMR and LC-MS, in order to obtain further insight into the involvement of lignan in the response of plant to osmotic stress. Results showed that wild-type and lignan-deficient flax plants have different metabolic responses after being exposed to osmotic stress conditions, but they both showed the capacity to induce an adaptive response to osmotic stress. These findings suggest the indirect involvement of lignans in osmotic stress response.


2016 ◽  
Vol 118 (12) ◽  
pp. 1960-1991 ◽  
Author(s):  
Elizabeth Murphy ◽  
Hossein Ardehali ◽  
Robert S. Balaban ◽  
Fabio DiLisa ◽  
Gerald W. Dorn ◽  
...  

Cardiovascular disease is a major leading cause of morbidity and mortality in the United States and elsewhere. Alterations in mitochondrial function are increasingly being recognized as a contributing factor in myocardial infarction and in patients presenting with cardiomyopathy. Recent understanding of the complex interaction of the mitochondria in regulating metabolism and cell death can provide novel insight and therapeutic targets. The purpose of this statement is to better define the potential role of mitochondria in the genesis of cardiovascular disease such as ischemia and heart failure. To accomplish this, we will define the key mitochondrial processes that play a role in cardiovascular disease that are potential targets for novel therapeutic interventions. This is an exciting time in mitochondrial research. The past decade has provided novel insight into the role of mitochondria function and their importance in complex diseases. This statement will define the key roles that mitochondria play in cardiovascular physiology and disease and provide insight into how mitochondrial defects can contribute to cardiovascular disease; it will also discuss potential biomarkers of mitochondrial disease and suggest potential novel therapeutic approaches.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 307 ◽  
Author(s):  
Shahzaib Nabi ◽  
Elizabeth R. Kessler ◽  
Brandon Bernard ◽  
Thomas W. Flaig ◽  
Elaine T. Lam

Over the past decade, our understanding of the biology and pathophysiology of renal cell carcinoma (RCC) has improved significantly. Insight into the disease process has helped us in developing newer therapeutic approaches toward RCC. In this article, we review the various genetic and immune-related mechanisms involved in the pathogenesis and development of this cancer and how that knowledge is being used to develop therapeutic targeted drugs for the treatment of RCC. The main emphasis of this review article is on the most common genetic alterations found in clear cell RCC and how various drugs are currently targeting such pathways. This article also looks at the role of the immune system in allowing the growth of RCC and how the immune system can be manipulated to reactivate cytotoxic immunity against RCC.


2011 ◽  
Vol 3 (1) ◽  
pp. 84
Author(s):  
Benjamin Lauzier ◽  
Bertrand Bouchard ◽  
Fanny Vaillant ◽  
Francois Labarthe ◽  
Caroline Daneault ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1547 ◽  
Author(s):  
Claudia D’Agostino ◽  
Osama A. Elkashty ◽  
Clara Chivasso ◽  
Jason Perret ◽  
Simon D. Tran ◽  
...  

The main role of salivary glands (SG) is the production and secretion of saliva, in which aquaporins (AQPs) play a key role by ensuring water flow. The AQPs are transmembrane channel proteins permeable to water to allow water transport across cell membranes according to osmotic gradient. This review gives an insight into SG AQPs. Indeed, it gives a summary of the expression and localization of AQPs in adult human, rat and mouse SG, as well as of their physiological role in SG function. Furthermore, the review provides a comprehensive view of the involvement of AQPs in pathological conditions affecting SG, including Sjögren’s syndrome, diabetes, agedness, head and neck cancer radiotherapy and SG cancer. These conditions are characterized by salivary hypofunction resulting in xerostomia. A specific focus is given on current and future therapeutic strategies aiming at AQPs to treat xerostomia. A deeper understanding of the AQPs involvement in molecular mechanisms of saliva secretion and diseases offered new avenues for therapeutic approaches, including drugs, gene therapy and tissue engineering. As such, AQP5 represents a potential therapeutic target in different strategies for the treatment of xerostomia.


BMC Biology ◽  
2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Neha M. Akella ◽  
Lorela Ciraku ◽  
Mauricio J. Reginato

2015 ◽  
Vol 467 (1) ◽  
pp. 115-126 ◽  
Author(s):  
Sujith Dassanayaka ◽  
Ryan D. Readnower ◽  
Joshua K. Salabei ◽  
Bethany W. Long ◽  
Allison L. Aird ◽  
...  

Diabetes is characterized by hyperglycaemia and perturbations in intermediary metabolism. In particular, diabetes can augment flux through accessory pathways of glucose metabolism, such as the hexosamine biosynthetic pathway (HBP), which produces the sugar donor for the β-O-linked-N-acetylglucosamine (O-GlcNAc) post-translational modification of proteins. Diabetes also promotes mitochondrial dysfunction. Nevertheless, the relationships among diabetes, hyperglycaemia, mitochondrial dysfunction and O-GlcNAc modifications remain unclear. In the present study, we tested whether high-glucose-induced increases in O-GlcNAc modifications directly regulate mitochondrial function in isolated cardiomyocytes. Augmentation of O-GlcNAcylation with high glucose (33 mM) was associated with diminished basal and maximal cardiomyocyte respiration, a decreased mitochondrial reserve capacity and lower Complex II-dependent respiration (P<0.05); however, pharmacological or genetic modulation of O-GlcNAc modifications under normal or high glucose conditions showed few significant effects on mitochondrial respiration, suggesting that O-GlcNAc does not play a major role in regulating cardiomyocyte mitochondrial function. Furthermore, an osmotic control recapitulated high-glucose-induced changes to mitochondrial metabolism (P<0.05) without increasing O-GlcNAcylation. Thus, increased O-GlcNAcylation is neither sufficient nor necessary for high-glucose-induced suppression of mitochondrial metabolism in isolated cardiomyocytes.


Sign in / Sign up

Export Citation Format

Share Document