scholarly journals Genome editing for blood disorders: state of the art and recent advances

2019 ◽  
Vol 3 (3) ◽  
pp. 289-299 ◽  
Author(s):  
Marianna Romito ◽  
Rajeev Rai ◽  
Adrian J. Thrasher ◽  
Alessia Cavazza

Abstract In recent years, tremendous advances have been made in the use of gene editing to precisely engineer the genome. This technology relies on the activity of a wide range of nuclease platforms — such as zinc-finger nucleases, transcription activator-like effector nucleases, and the CRISPR–Cas system — that can cleave and repair specific DNA regions, providing a unique and flexible tool to study gene function and correct disease-causing mutations. Preclinical studies using gene editing to tackle genetic and infectious diseases have highlighted the therapeutic potential of this technology. This review summarizes the progresses made towards the development of gene editing tools for the treatment of haematological disorders and the hurdles that need to be overcome to achieve clinical success.

Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2518
Author(s):  
Maryam Saifaldeen ◽  
Dana E. Al-Ansari ◽  
Dindial Ramotar ◽  
Mustapha Aouida

The identification of the robust clustered regularly interspersed short palindromic repeats (CRISPR) associated endonuclease (Cas9) system gene-editing tool has opened up a wide range of potential therapeutic applications that were restricted by more complex tools, including zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). Nevertheless, the high frequency of CRISPR system off-target activity still limits its applications, and, thus, advanced strategies for highly specific CRISPR/Cas9-mediated genome editing are continuously under development including CRISPR–FokI dead Cas9 (fdCas9). fdCas9 system is derived from linking a FokI endonuclease catalytic domain to an inactive Cas9 protein and requires a pair of guide sgRNAs that bind to the sense and antisense strands of the DNA in a protospacer adjacent motif (PAM)-out orientation, with a defined spacer sequence range around the target site. The dimerization of FokI domains generates DNA double-strand breaks, which activates the DNA repair machinery and results in genomic edit. So far, all the engineered fdCas9 variants have shown promising gene-editing activities in human cells when compared to other platforms. Herein, we review the advantages of all published variants of fdCas9 and their current applications in genome engineering.


Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 530
Author(s):  
Marlo K. Thompson ◽  
Robert W. Sobol ◽  
Aishwarya Prakash

The earliest methods of genome editing, such as zinc-finger nucleases (ZFN) and transcription activator-like effector nucleases (TALENs), utilize customizable DNA-binding motifs to target the genome at specific loci. While these approaches provided sequence-specific gene-editing capacity, the laborious process of designing and synthesizing recombinant nucleases to recognize a specific target sequence, combined with limited target choices and poor editing efficiency, ultimately minimized the broad utility of these systems. The discovery of clustered regularly interspaced short palindromic repeat sequences (CRISPR) in Escherichia coli dates to 1987, yet it was another 20 years before CRISPR and the CRISPR-associated (Cas) proteins were identified as part of the microbial adaptive immune system, by targeting phage DNA, to fight bacteriophage reinfection. By 2013, CRISPR/Cas9 systems had been engineered to allow gene editing in mammalian cells. The ease of design, low cytotoxicity, and increased efficiency have made CRISPR/Cas9 and its related systems the designer nucleases of choice for many. In this review, we discuss the various CRISPR systems and their broad utility in genome manipulation. We will explore how CRISPR-controlled modifications have advanced our understanding of the mechanisms of genome stability, using the modulation of DNA repair genes as examples.


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 246
Author(s):  
Bogdan Doroftei ◽  
Ovidiu-Dumitru Ilie ◽  
Maria Puiu ◽  
Alin Ciobica ◽  
Ciprian Ilea

Infertility is a highly debated topic today. It has been long hypothesized that infertility has an idiopathic cause, but recent studies demonstrated the existence of a genetic substrate. Fortunately, the methods of editing the human genome proven to be revolutionary. Following research conducted, we identified a total of 21 relevant studies; 14 were performed on mice, 5 on zebrafish and 2 on rats. We concluded that over forty-four genes in total are dispensable for fertility in both sexes without affecting host homeostasis. However, there are genes whose loss-of-function induces moderate to severe phenotypic changes in both sexes. There were situations in which the authors reported infertility, exhibited by the experimental model, or other pathologies such as cryptorchidism, cataracts, or reduced motor activity. Overall, zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 are techniques that offer a wide range of possibilities for studying infertility, even to create mutant variants. It can be concluded that ZFNs, TALENs, and CRISPR/Cas9 are crucial tools in biomedical research.


2018 ◽  
Vol 55 (3) ◽  
pp. 143-149 ◽  
Author(s):  
Yichun Bai ◽  
Yang Liu ◽  
Zhenlei Su ◽  
Yana Ma ◽  
Chonghua Ren ◽  
...  

Respiratory diseases, which are leading causes of mortality and morbidity in the world, are dysfunctions of the nasopharynx, the trachea, the bronchus, the lung and the pleural cavity. Symptoms of chronic respiratory diseases, such as cough, sneezing and difficulty breathing, may seriously affect the productivity, sleep quality and physical and mental well-being of patients, and patients with acute respiratory diseases may have difficulty breathing, anoxia and even life-threatening respiratory failure. Respiratory diseases are generally heterogeneous, with multifaceted causes including smoking, ageing, air pollution, infection and gene mutations. Clinically, a single pulmonary disease can exhibit more than one phenotype or coexist with multiple organ disorders. To correct abnormal function or repair injured respiratory tissues, one of the most promising techniques is to correct mutated genes by gene editing, as some gene mutations have been clearly demonstrated to be associated with genetic or heterogeneous respiratory diseases. Zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN) and clustered regulatory interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) systems are three innovative gene editing technologies developed recently. In this short review, we have summarised the structure and operating principles of the ZFNs, TALENs and CRISPR/Cas9 systems and their preclinical and clinical applications in respiratory diseases.


2018 ◽  
Vol 27 (3) ◽  
pp. 364-378 ◽  
Author(s):  
Hueng-Chuen Fan ◽  
Ching-Shiang Chi ◽  
Yih-Jing Lee ◽  
Jeng-Dau Tsai ◽  
Shinn-Zong Lin ◽  
...  

Neurodegenerative diseases (NDs), at least including Alzheimer’s, Huntington’s, and Parkinson’s diseases, have become the most dreaded maladies because there are no precise diagnostic tools or definite treatments for these debilitating diseases. The increased prevalence and a substantial impact on the social–economic and medical care of NDs propel governments to develop policies to counteract the impact. Although the etiologies of NDs are still unknown, growing evidence suggests that genetic, cellular, and circuit alternations may cause the generation of abnormal misfolded proteins, which uncontrolledly accumulate to damage and eventually overwhelm the protein-disposal mechanisms of these neurons, leading to a common pathological feature of NDs. If the functions and the connectivity can be restored, alterations and accumulated damages may improve. The gene-editing tools including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats–associated nucleases (CRISPR/CAS) have emerged as a novel tool not only for generating specific ND animal models for interrogating the mechanisms and screening potential drugs against NDs but also for the editing sequence-specific genes to help patients with NDs to regain function and connectivity. This review introduces the clinical manifestations of three distinct NDs and the applications of the gene-editing technology on these debilitating diseases.


2021 ◽  
Vol 11 ◽  
Author(s):  
Satya Swathi Nadakuduti ◽  
Felix Enciso-Rodríguez

The year 2020 marks a decade since the first gene-edited plants were generated using homing endonucleases and zinc finger nucleases. The advent of CRISPR/Cas9 for gene-editing in 2012 was a major science breakthrough that revolutionized both basic and applied research in various organisms including plants and consequently honored with “The Nobel Prize in Chemistry, 2020.” CRISPR technology is a rapidly evolving field and multiple CRISPR-Cas derived reagents collectively offer a wide range of applications for gene-editing and beyond. While most of these technological advances are successfully adopted in plants to advance functional genomics research and development of innovative crops, others await optimization. One of the biggest bottlenecks in plant gene-editing has been the delivery of gene-editing reagents, since genetic transformation methods are only established in a limited number of species. Recently, alternative methods of delivering CRISPR reagents to plants are being explored. This review mainly focuses on the most recent advances in plant gene-editing including (1) the current Cas effectors and Cas variants with a wide target range, reduced size and increased specificity along with tissue specific genome editing tool kit (2) cytosine, adenine, and glycosylase base editors that can precisely install all possible transition and transversion mutations in target sites (3) prime editing that can directly copy the desired edit into target DNA by search and replace method and (4) CRISPR delivery mechanisms for plant gene-editing that bypass tissue culture and regeneration procedures including de novo meristem induction, delivery using viral vectors and prospects of nanotechnology-based approaches.


2018 ◽  
Vol 4 ◽  
pp. 5
Author(s):  
Habib Rezanejadbardeji ◽  
Bahareh Behroozi-Asl ◽  
Raheleh Amirkhah

CRISPR/Cas system, a microbial adaptive immune system, has rapidly transformed the ways researchers can interrogate the genome. CRISPR has many advantages over traditional methods such as Transcription activator-like effector nucleases (TALEN) and Zinc-finger nucleases (ZFN). Since CRISPR discovery as an adaptive immune system used by bacterial against viruses, it has been repurposed to help in many different genome-related studies such as gene knocking in and out, gene expression upregulation and downregulation. Also CRISPR holds vast therapeutic potential for the management of genetic disorders by straight modifying disease-causing mutations. Although the Cas9 protein has been revealed to attach and cleave DNA at off-target sites, the field of Cas9 specificity is quickly progressing, with marked modifying in guide RNA choice, protein and guide engineering, innovative enzymes, and off-target recognition methods. In current review we mostly focus on CRISPR unique ability in gene activation/ upregulation, which has wide applications in different aspects such as gene studies, stem cell differentiation, and trans-differentiation. Compared to other gene activation methods such as viral gene overexpression, TALEN and ZFN, CRISPR offers many benefits such as easy designing and high precision.


2021 ◽  
Vol 14 (11) ◽  
pp. 1171
Author(s):  
Sahar Serajian ◽  
Ehsan Ahmadpour ◽  
Sonia M. Rodrigues Oliveira ◽  
Maria de Lourdes Pereira ◽  
Siamak Heidarzadeh

Through the years, many promising tools for gene editing have been developed including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), CRISPR-associated protein 9 (Cas9), and homing endonucleases (HEs). These novel technologies are now leading new scientific advancements and practical applications at an inimitable speed. While most work has been performed in eukaryotes, CRISPR systems also enable tools to understand and engineer bacteria. The increase in the number of multi-drug resistant strains highlights a necessity for more innovative approaches to the diagnosis and treatment of infections. CRISPR has given scientists a glimmer of hope in this area that can provide a novel tool to fight against antimicrobial resistance. This system can provide useful information about the functions of genes and aid us to find potential targets for antimicrobials. This paper discusses the emerging use of CRISPR-Cas systems in the fields of clinical microbiology and infectious diseases with a particular emphasis on future prospects.


2020 ◽  
Vol 21 (16) ◽  
pp. 5665 ◽  
Author(s):  
Sunny Ahmar ◽  
Sumbul Saeed ◽  
Muhammad Hafeez Ullah Khan ◽  
Shahid Ullah Khan ◽  
Freddy Mora-Poblete ◽  
...  

Genome editing is a relevant, versatile, and preferred tool for crop improvement, as well as for functional genomics. In this review, we summarize the advances in gene-editing techniques, such as zinc-finger nucleases (ZFNs), transcription activator-like (TAL) effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR) associated with the Cas9 and Cpf1 proteins. These tools support great opportunities for the future development of plant science and rapid remodeling of crops. Furthermore, we discuss the brief history of each tool and provide their comparison and different applications. Among the various genome-editing tools, CRISPR has become the most popular; hence, it is discussed in the greatest detail. CRISPR has helped clarify the genomic structure and its role in plants: For example, the transcriptional control of Cas9 and Cpf1, genetic locus monitoring, the mechanism and control of promoter activity, and the alteration and detection of epigenetic behavior between single-nucleotide polymorphisms (SNPs) investigated based on genetic traits and related genome-wide studies. The present review describes how CRISPR/Cas9 systems can play a valuable role in the characterization of the genomic rearrangement and plant gene functions, as well as the improvement of the important traits of field crops with the greatest precision. In addition, the speed editing strategy of gene-family members was introduced to accelerate the applications of gene-editing systems to crop improvement. For this, the CRISPR technology has a valuable advantage that particularly holds the scientist’s mind, as it allows genome editing in multiple biological systems.


Author(s):  
T Tahir ◽  
Q Ali ◽  
MS Rashid ◽  
A Malik

Today we can use multiple of endonucleases for genome editing which has become very important and used in number of applications. We use sequence specific molecular scissors out of which, most important are mega nucleases, zinc finger nucleases, TALENS (Transcription Activator Like-Effector Nucleases) and CRISPR-Cas9 which is currently the most famous due to a number of reasons, they are cheap, easy to build, very specific in nature and their success rate in plants and animals is also high. Who knew that one day these CRISPR discovered as a part of immune system of bacteria will be this much worthwhile in the field of genetic engineering? This review interprets the science behind their mechanism and how several advancements were made with the passage of time to make them more efficient for the assigned job.


Sign in / Sign up

Export Citation Format

Share Document