Effects of Alphabet-Supplemented Speech on Brain Activity of Listeners: An fMRI Study

2015 ◽  
Vol 58 (5) ◽  
pp. 1452-1463 ◽  
Author(s):  
Kelene Fercho ◽  
Lee A. Baugh ◽  
Elizabeth K. Hanson

Purpose The purpose of this article was to examine the neural mechanisms associated with increases in speech intelligibility brought about through alphabet supplementation. Method Neurotypical participants listened to dysarthric speech while watching an accompanying video of a hand pointing to the 1st letter spoken of each word on an alphabet display (treatment condition) or a scrambled display (control condition). Their hemodynamic response was measured with functional magnetic resonance imaging, using a sparse sampling event-related paradigm. Speech intelligibility was assessed via a forced-choice auditory identification task throughout the scanning session. Results Alphabet supplementation was associated with significant increases in speech intelligibility. Further, alphabet supplementation increased activation in brain regions known to be involved in both auditory speech and visual letter perception above that seen with the scrambled display. Significant increases in functional activity were observed within the posterior to mid superior temporal sulcus/superior temporal gyrus during alphabet supplementation, regions known to be involved in speech processing and audiovisual integration. Conclusion Alphabet supplementation is an effective tool for increasing the intelligibility of degraded speech and is associated with changes in activity within audiovisual integration sites. Changes in activity within the superior temporal sulcus/superior temporal gyrus may be related to the behavioral increases in intelligibility brought about by this augmented communication method.

Author(s):  
Qingqing Meng ◽  
Yiwen Li Hegner ◽  
Iain Giblin ◽  
Catherine McMahon ◽  
Blake W Johnson

AbstractProviding a plausible neural substrate of speech processing and language comprehension, cortical activity has been shown to track different levels of linguistic structure in connected speech (syllables, phrases and sentences), independent of the physical regularities of the acoustic stimulus. In the current study, we investigated the effect of speech intelligibility on this brain activity as well as the underlying neural sources. Using magnetoencephalography (MEG), brain responses to natural speech and noise-vocoded (spectrally-degraded) speech in nineteen normal hearing participants were measured. Results showed that cortical MEG coherence to linguistic structure changed parametrically with the intelligibility of the speech signal. Cortical responses coherent with phrase and sentence structures were lefthemisphere lateralized, whereas responses coherent to syllable/word structure were bilateral. The enhancement of coherence to intelligible compared to unintelligible speech was also left lateralized and localized to the parasylvian cortex. These results demonstrate that cortical responses to higher level linguistics structures (phrase and sentence level) are sensitive to speech intelligibility. Since the noise-vocoded sentences simulate the auditory input provided by a cochlear implant, such objective neurophysiological measures have potential clinical utility for assessment of cochlear implant performance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Toshio Tsuji ◽  
Fumiya Arikuni ◽  
Takafumi Sasaoka ◽  
Shin Suyama ◽  
Takashi Akiyoshi ◽  
...  

AbstractBrain activity associated with pain perception has been revealed by numerous PET and fMRI studies over the past few decades. These findings helped to establish the concept of the pain matrix, which is the distributed brain networks that demonstrate pain-specific cortical activities. We previously found that peripheral arterial stiffness $${\beta }_{\text{art}}$$ β art responds to pain intensity, which is estimated from electrocardiography, continuous sphygmomanometer, and photo-plethysmography. However, it remains unclear whether and to what extent $${\beta }_{\text{art}}$$ β art aligns with pain matrix brain activity. In this fMRI study, 22 participants received different intensities of pain stimuli. We identified brain regions in which the blood oxygen level-dependent signal covaried with $${\beta }_{\text{art}}$$ β art using parametric modulation analysis. Among the identified brain regions, the lateral and medial prefrontal cortex and ventral and dorsal anterior cingulate cortex were consistent with the pain matrix. We found moderate correlations between the average activities in these regions and $${\beta }_{\text{art}}$$ β art (r = 0.47, p < 0.001). $${\beta }_{\text{art}}$$ β art was also significantly correlated with self-reported pain intensity (r = 0.44, p < 0.001) and applied pain intensity (r = 0.43, p < 0.001). Our results indicate that $${\beta }_{\text{art}}$$ β art is positively correlated with pain-related brain activity and subjective pain intensity. This study may thus represent a basis for adopting peripheral arterial stiffness as an objective pain evaluation metric.


2021 ◽  
pp. 1-29
Author(s):  
Kangyu Jin ◽  
Zhe Shen ◽  
Guoxun Feng ◽  
Zhiyong Zhao ◽  
Jing Lu ◽  
...  

Abstract Objective: A few former studies suggested there are partial overlaps in abnormal brain structure and cognitive function between Hypochondriasis (HS) and schizophrenia (SZ). But their differences in brain activity and cognitive function were unclear. Methods: 21 HS patients, 23 SZ patients, and 24 healthy controls (HC) underwent Resting-state functional magnetic resonance imaging (rs-fMRI) with the regional homogeneity analysis (ReHo), subsequently exploring the relationship between ReHo value and cognitive functions. The support vector machines (SVM) were used on effectiveness evaluation of ReHo for differentiating HS from SZ. Results: Compared with HC, HS showed significantly increased ReHo values in right middle temporal gyrus (MTG), left inferior parietal lobe (IPL) and right fusiform gyrus (FG), while SZ showed increased ReHo in left insula, decreased ReHo values in right paracentral lobule. Additionally, HS showed significantly higher ReHo values in FG, MTG and left paracentral lobule but lower in insula than SZ. The higher ReHo values in insula were associated with worse performance in MCCB in HS group. SVM analysis showed a combination of the ReHo values in insula and FG was able to satisfactorily distinguish the HS and SZ patients. Conclusion: our results suggested the altered default mode network (DMN), of which abnormal spontaneous neural activity occurs in multiple brain regions, might play a key role in the pathogenesis of HS, and the resting-state alterations of insula closely related to cognitive dysfunction in HS. Furthermore, the combination of the ReHo in FG and insula was a relatively ideal indicator to distinguish HS from SZ.


2019 ◽  
Vol 6 (3) ◽  
pp. 181908 ◽  
Author(s):  
Steven Brown ◽  
Peter Cockett ◽  
Ye Yuan

The current study represents a first attempt at examining the neural basis of dramatic acting. While all people play multiple roles in daily life—for example, ‘spouse' or ‘employee'—these roles are all facets of the ‘self' and thus of the first-person (1P) perspective. Compared to such everyday role playing, actors are required to portray other people and to adopt their gestures, emotions and behaviours. Consequently, actors must think and behave not as themselves but as the characters they are pretending to be. In other words, they have to assume a ‘fictional first-person' (Fic1P) perspective. In this functional MRI study, we sought to identify brain regions preferentially activated when actors adopt a Fic1P perspective during dramatic role playing. In the scanner, university-trained actors responded to a series of hypothetical questions from either their own 1P perspective or from that of Romeo (male participants) or Juliet (female participants) from Shakespeare's drama. Compared to responding as oneself, responding in character produced global reductions in brain activity and, particularly, deactivations in the cortical midline network of the frontal lobe, including the dorsomedial and ventromedial prefrontal cortices. Thus, portraying a character through acting seems to be a deactivation-driven process, perhaps representing a ‘loss of self'.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Hyojin Park ◽  
Christoph Kayser ◽  
Gregor Thut ◽  
Joachim Gross

During continuous speech, lip movements provide visual temporal signals that facilitate speech processing. Here, using MEG we directly investigated how these visual signals interact with rhythmic brain activity in participants listening to and seeing the speaker. First, we investigated coherence between oscillatory brain activity and speaker’s lip movements and demonstrated significant entrainment in visual cortex. We then used partial coherence to remove contributions of the coherent auditory speech signal from the lip-brain coherence. Comparing this synchronization between different attention conditions revealed that attending visual speech enhances the coherence between activity in visual cortex and the speaker’s lips. Further, we identified a significant partial coherence between left motor cortex and lip movements and this partial coherence directly predicted comprehension accuracy. Our results emphasize the importance of visually entrained and attention-modulated rhythmic brain activity for the enhancement of audiovisual speech processing.


2008 ◽  
Vol 20 (12) ◽  
pp. 2125-2136 ◽  
Author(s):  
Grit Hein ◽  
Robert T. Knight

The superior temporal sulcus (STS) is the chameleon of the human brain. Several research areas claim the STS as the host brain region for their particular behavior of interest. Some see it as one of the core structures for theory of mind. For others, it is the main region for audiovisual integration. It plays an important role in biological motion perception, but is also claimed to be essential for speech processing and processing of faces. We review the foci of activations in the STS from multiple functional magnetic resonance imaging studies, focusing on theory of mind, audiovisual integration, motion processing, speech processing, and face processing. The results indicate a differentiation of the STS region in an anterior portion, mainly involved in speech processing, and a posterior portion recruited by cognitive demands of all these different research areas. The latter finding argues against a strict functional subdivision of the STS. In line with anatomical evidence from tracer studies, we propose that the function of the STS varies depending on the nature of network coactivations with different regions in the frontal cortex and medial-temporal lobe. This view is more in keeping with the notion that the same brain region can support different cognitive operations depending on task-dependent network connections, emphasizing the role of network connectivity analysis in neuroimaging.


2000 ◽  
Vol 83 (5) ◽  
pp. 3133-3139 ◽  
Author(s):  
Vincent P. Clark ◽  
Sean Fannon ◽  
Song Lai ◽  
Randall Benson ◽  
Lance Bauer

Previous studies have found that the P300 or P3 event-related potential (ERP) component is useful in the diagnosis and treatment of many disorders that influence CNS function. However, the anatomic locations of brain regions involved in this response are not precisely known. In the present event-related functional magnetic resonance imaging (fMRI) study, methods of stimulus presentation, data acquisition, and data analysis were optimized for the detection of brain activity in response to stimuli presented in the three-stimulus oddball task. This paradigm involves the interleaved, pseudorandom presentation of single block-letter target and distractor stimuli that previously were found to generate the P3b and P3a ERP subcomponents, respectively, and frequent standard stimuli. Target stimuli evoked fMRI signal increases in multiple brain regions including the thalamus, the bilateral cerebellum, and the occipital-temporal cortex as well as bilateral superior, medial, inferior frontal, inferior parietal, superior temporal, precentral, postcentral, cingulate, insular, left middle temporal, and right middle frontal gyri. Distractor stimuli evoked an fMRI signal change bilaterally in inferior anterior cingulate, medial frontal, inferior frontal, and right superior frontal gyri, with additional activity in bilateral inferior parietal lobules, lateral cerebellar hemispheres and vermis, and left fusiform, middle occipital, and superior temporal gyri. Significant variation in the amplitude and polarity of distractor-evoked activity was observed across stimulus repetitions. No overlap was observed between target- and distractor-evoked activity. These event-related fMRI results shed light on the anatomy of responses to target and distractor stimuli that have proven useful in many ERP studies of healthy and clinically impaired populations.


2021 ◽  
Vol 11 (8) ◽  
pp. 983
Author(s):  
Xin Wang ◽  
Shiwen Feng ◽  
Tongquan Zhou ◽  
Renyu Wang ◽  
Guowei Wu ◽  
...  

According to the Unaccusative Hypothesis, intransitive verbs are divided into unaccusative and unergative ones based on the distinction of their syntactic properties, which has been proved by previous theoretical and empirical evidence. However, debate has been raised regarding whether intransitive verbs in Mandarin Chinese can be split into unaccusative and unergative ones syntactically. To analyze this theoretical controversy, the present study employed functional magnetic resonance imaging to compare the neural processing of deep unaccusative, unergative sentences, and passive sentences (derived structures undergoing a syntactic movement) in Mandarin Chinese. The results revealed no significant difference in the neural processing of deep unaccusative and unergative sentences, and the comparisons between passive sentences and the other sentence types revealed activation in the left superior temporal gyrus (LSTG) and the left middle frontal gyrus (LMFG). These findings indicate that the syntactic processing of unaccusative and unergative verbs in Mandarin Chinese is highly similar but different from that of passive verbs, which suggests that deep unaccusative and unergative sentences in Mandarin Chinese are both base-generated structures and that there is no syntactic distinction between unaccusative and unergative verbs in Mandarin Chinese.


2021 ◽  
Author(s):  
Anna Uta Rysop ◽  
Lea-Maria Schmitt ◽  
Jonas Obleser ◽  
Gesa Hartwigsen

AbstractSpeech comprehension is often challenged by increased background noise, but can be facilitated via the semantic context of a sentence. This predictability gain relies on an interplay of language-specific semantic and domain-general brain regions. However, age-related differences in the interactions within and between semantic and domain-general networks remain poorly understood. Here we investigated commonalities and differences in degraded speech processing in healthy young and old participants. Participants performed a sentence repetition task while listening to sentences with high and low predictable endings and varying intelligibility. Stimulus intelligibility was adjusted to individual hearing abilities. Older adults showed an undiminished behavioural predictability gain. Likewise, both groups recruited a similar set of semantic and cingulo-opercular brain regions. However, we observed age-related differences in effective connectivity for high predictable speech of increasing intelligibility. Young adults exhibited stronger coupling within the cingulo-opercular network and between a cingulo-opercular and a posterior temporal semantic node. Moreover, these interactions were excitatory in young adults but inhibitory in old adults. Finally, the degree of the inhibitory influence between cingulo-opercular regions was predictive of the behavioural sensitivity towards changes in intelligibility for high predictable sentences in older adults only. Our results demonstrate that the predictability gain is relatively preserved in older adults when stimulus intelligibility is individually adjusted. While young and old participants recruit similar brain regions, differences manifest in network dynamics. Together, these results suggest that ageing affects the network configuration rather than regional activity during successful speech comprehension under challenging listening conditions.


2018 ◽  
Vol 29 (9) ◽  
pp. 4006-4016 ◽  
Author(s):  
Tomi Karjalainen ◽  
Kerttu Seppälä ◽  
Enrico Glerean ◽  
Henry K Karlsson ◽  
Juha M Lahnakoski ◽  
...  

Abstract Emotions can be characterized by dimensions of arousal and valence (pleasantness). While the functional brain bases of emotional arousal and valence have been actively investigated, the neuromolecular underpinnings remain poorly understood. We tested whether the opioid and dopamine systems involved in reward and motivational processes would be associated with emotional arousal and valence. We used in vivo positron emission tomography to quantify μ-opioid receptor and type 2 dopamine receptor (MOR and D2R, respectively) availability in brains of 35 healthy adult females. During subsequent functional magnetic resonance imaging carried out to monitor hemodynamic activity, the subjects viewed movie scenes of varying emotional content. Arousal and valence were associated with hemodynamic activity in brain regions involved in emotional processing, including amygdala, thalamus, and superior temporal sulcus. Cerebral MOR availability correlated negatively with the hemodynamic responses to arousing scenes in amygdala, hippocampus, thalamus, and hypothalamus, whereas no positive correlations were observed in any brain region. D2R availability—here reliably quantified only in striatum—was not associated with either arousal or valence. These results suggest that emotional arousal is regulated by the MOR system, and that cerebral MOR availability influences brain activity elicited by arousing stimuli.


Sign in / Sign up

Export Citation Format

Share Document