High-transconductance p-type SiGe modulation-doped field-effect transistor

1995 ◽  
Vol 31 (8) ◽  
pp. 680 ◽  
Author(s):  
M. Arafa ◽  
K. Ismail ◽  
P. Fay ◽  
J.O. Chu ◽  
B.S. Meyerson ◽  
...  
2021 ◽  
Author(s):  
Suman Yadav ◽  
Shivani Sharma ◽  
Satinder K Sharma ◽  
Chullikkattil P. Pradeep

Solution-processable organic semiconductors capable of functioning at low operating voltages (~5 V) are in demand for organic field-effect transistor (OFET) applications. Exploration of new classes of compounds as organic thin-film...


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7491
Author(s):  
Abbas Panahi ◽  
Deniz Sadighbayan ◽  
Ebrahim Ghafar-Zadeh

This paper presents a new field-effect sensor called open-gate junction gate field-effect transistor (OG-JFET) for biosensing applications. The OG-JFET consists of a p-type channel on top of an n-type layer in which the p-type serves as the sensing conductive layer between two ohmic contacted sources and drain electrodes. The structure is novel as it is based on a junction field-effect transistor with a subtle difference in that the top gate (n-type contact) has been removed to open the space for introducing the biomaterial and solution. The channel can be controlled through a back gate, enabling the sensor’s operation without a bulky electrode inside the solution. In this research, in order to demonstrate the sensor’s functionality for chemical and biosensing, we tested OG-JFET with varying pH solutions, cell adhesion (human oral neutrophils), human exhalation, and DNA molecules. Moreover, the sensor was simulated with COMSOL Multiphysics to gain insight into the sensor operation and its ion-sensitive capability. The complete simulation procedures and the physics of pH modeling is presented here, being numerically solved in COMSOL Multiphysics software. The outcome of the current study puts forward OG-JFET as a new platform for biosensing applications.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
W. Wang ◽  
C. Hu ◽  
S. Y. Li ◽  
F. N. Li ◽  
Z. C. Liu ◽  
...  

Investigation of Zr-gate diamond field-effect transistor withSiNxdielectric layers (SD-FET) has been carried out. SD-FET works in normally on depletion mode with p-type channel, whose sheet carrier density and hole mobility are evaluated to be 2.17 × 1013 cm−2and 24.4 cm2·V−1·s−1, respectively. The output and transfer properties indicate the preservation of conduction channel because of theSiNxdielectric layer, which may be explained by the interface bond of C-N. High voltage up to −200 V is applied to the device, and no breakdown is observed. For comparison, another traditional surface channel FET (SC-FET) is also fabricated.


1987 ◽  
Vol 50 (9) ◽  
pp. 535-536 ◽  
Author(s):  
J. Y. Raulin ◽  
E. Thorngren ◽  
M. A. di Forte‐Poisson ◽  
M. Razeghi ◽  
G. Colomer

2013 ◽  
Vol 102 (7) ◽  
pp. 073503 ◽  
Author(s):  
Jae Woo Lee ◽  
Moon ju Cho ◽  
Eddy Simoen ◽  
Romain Ritzenthaler ◽  
Mitsuhiro Togo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document