scholarly journals Influence of water stress on grape quality and aroma precursors in Sauvignon Blanc grown in Bolgheri area (Tuscany)

2019 ◽  
Vol 13 ◽  
pp. 03001 ◽  
Author(s):  
Eleonora Cataldo ◽  
Linda Salvi ◽  
Francesca Paoli ◽  
Sofia Sbraci ◽  
Giovan Battista Mattii

Climate change has a direct impact on the phenological stages of the grapevine, with consequences on the anticipation of aging and on the qualitative characteristics of the grapes. In fact, there is a decrease in the skin/pulp ratio, with possible reduction of the aromatic potential. This work was aimed at assessing the effects of water stress on technological maturity and thiol precursors of Sauvignon Blanc grapes in two vineyards of Bolgheri. To this purpose, 3 theses have been established: WW, well watered; WS, moderate stress; CTRL, control. During the season, measurements of single leaf gas exchange, stem water potential were made; moreover parameters of technological maturity (° Brix, acidity, pH and berry weight) and thiol precursors were analyzed. As expected, the water potential was less negative in the irrigated thesis due to the greater availability of water, as well as the highest rates of photosynthesis, transpiration and stomatal conductance. Technological analyses showed no significant differences among the treatments. The analysis of the 3MH/3-mercaptoesan-1-ol precursors showed that the WW had a greater accumulation than the other theses. These results suggest that lower water stress favors a better aromatic content.

2021 ◽  
Author(s):  
Marta Rodríguez-Fernández ◽  
María Fandiño ◽  
Xesús Pablo González ◽  
Javier J. Cancela

<p>The estimation of the water status in the vineyard, is a very important factor, in which every day the winegrowers show more interest since it directly affects the quality and production in the vineyards. The situation generated by COVID-19 in viticulture, adds importance to tools that provide information of the hydric status of vineyard plants in a telematic way.</p><p>In the present study, the stem water potential in the 2018 and 2019 seasons, is analysed in a vineyard belonging to the Rias Baixas wine-growing area (Vilagarcia de Arousa, Spain), with 32 sampling points distributed throughout the plot, which allows the contrast and validation with the remote sensing methodology to estimate the water status of the vineyard using satellite images.</p><p>The satellite images have been downloaded from the Sentinel-2 satellite, on the closets available dates regarding the stem water potential measurements, carried out in the months of June to September, because this dates are considered the months in which vine plants have higher water requirements.</p><p>With satellite images, two spectral index related to the detection of water stress have been calculated: NDWI (Normalized Difference Water Index) and MSI (Moisture Stress Index). Stem water potential measurements, have allowed a linear regression with both index, to validate the use of these multispectral index to determine water stress in the vineyard.</p><p>Determination coefficients of r<sup>2</sup>=0.62 and 0.67, have been obtained in July and August 2018 and 0.54 in June of 2019 for the NDWI index, as well as values of 0.53 and 0.63 in July 2018 and June 2019 respectively, when it has been analysed the MSI index.</p><p>Between both seasons, the difference observed, that implies slightly greater water stress in 2019, is reflected in the climate conditions during the summer months, with an average accumulated rainfall that doesn’t exceed 46 mm of water. Although, the NDWI index has allowed to establish better relationships in the 2018 season respect to the MSI index and the 2019 season, (r<sup>2</sup>=0.60 NDWI in 2018), as well as greater differences in terms of water stress presented in the vineyard.</p><p>With the spectral index calculated, it has been possible to validate the use of these index for the determination of the water stress of the vineyard plants, as an efficient, fast and less expensive method, which allows the application of an efficient irrigation system in the vineyard.</p>


2021 ◽  
Author(s):  
Luz Karime Atencia ◽  
María Gómez del Campo ◽  
Gema Camacho ◽  
Antonio Hueso ◽  
Ana M. Tarquis

<p>Olive is the main fruit tree in Spain representing 50% of the fruit trees surface, around 2,751,255 ha. Due to its adaptation to arid conditions and the scarcity of water, regulated deficit irrigation (RDI) strategy is normally applied in traditional olive orchards and recently to high density orchards. The application of RDI is one of the most important technique used in the olive hedgerow orchard. An investigation of the detection of water stress in nonhomogeneous olive tree canopies such as orchards using remote sensing imagery is presented.</p><p>In 2018 and 2019 seasons, data on stem water potential were collected to characterize tree water state in a hedgerow olive orchard cv. Arbequina located in Chozas de Canales (Toledo). Close to the measurement’s dates, remote sensing images with spectral and thermal sensors were acquired. Several vegetation indexes (VI) using both or one type of sensors were estimated from the areas selected that correspond to the olive crown avoiding the canopy shadows.</p><p>Nonparametric statistical tests between the VIs and the stem water potential were carried out to reveal the most significant correlation. The results will be discussing in the context of robustness and sensitivity between both data sets at different phenological olive state.</p><p><strong>ACKNOWLODGEMENTS</strong></p><p>Financial support provided by the Spanish Research Agency co-financed with European Union FEDER funds (AEI/FEDER, UE, AGL2016-77282-C3-2R project) and Comunidad de Madrid through calls for grants for the completion of Industrial Doctorates, is greatly appreciated.</p>


OENO One ◽  
2013 ◽  
Vol 47 (4) ◽  
pp. 269 ◽  
Author(s):  
Edoardo Antonio Costantino Costantini ◽  
Alessandro Agnelli ◽  
Pierluigi Bucelli ◽  
Aldo Ciambotti ◽  
Valentina Dell’Oro ◽  
...  

<p style="text-align: justify;"><strong>Aim</strong>: To evaluate the relationship between carbon isotope ratio (δ<sup>13</sup>C) and wine grape viticultural and oenological performance in organic farming.</p><p style="text-align: justify;"><strong>Methods and results</strong>: The study was carried out for four years in the Chianti Classico wine production district (Central Italy), on five non irrigated vineyards conducted in organic farming. The reference variety was Sangiovese. Eleven sites were chosen for vine monitoring and grape sampling. The performance parameters were alcohol and must sugar content, sugar accumulation rate, mean berry weight, and extractable polyphenols. δ<sup>13</sup>C, stem water potential, and soil water availability were also monitored. Finally, soil nitrogen as well as yeast available nitrogen in the must were measured. δ<sup>13</sup>C was directly related to stem water potential and soil water deficit, and indicated a range of water stress conditions from none and moderate to strong. However, its relationship with viticultural and oenological results was contrary to expectation, that is, performance linearly increased along with soil moisture. On the other hand, the worst performance was obtained where both water and nitrogen were more limiting.</p><p style="text-align: justify;"><strong>Conclusions</strong>: The unexpected relationship between δ<sup>13</sup>C and Sangiovese performance was caused by low nitrogen availability. The studied sites all had low-fertility soils with poor or very poor nitrogen content. Therefore, in the plots where soil humidity was relatively higher, nitrogen plant uptake was favoured, and Sangiovese performance improved. Macronutrient being the main limiting factor, the performance was not lower in the plots where soil water availability was relatively larger. Therefore, the best viticultural result was obtained with no water stress conditions, at low rather than at intermediate δ<sup>13</sup>C values.</p><p style="text-align: justify;"><strong>Significance and impact of the study</strong>: Water nutrition is crucial for wine grape performance. δ<sup>13</sup>C is a method used to assess vine water status during the growing season and to estimate vine performance. A good performance is expected at moderate stress and intermediate δ<sup>13</sup>C values. A better knowledge of the interaction between water and nutrient scarcity is needed, as it can affect the use of δ<sup>13</sup>C to predict vine performance.</p>


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2780
Author(s):  
Victor Blanco ◽  
Lee Kalcsits

Stem water potential (Ψstem) is considered to be the standard measure of plant water status. However, it is measured with the pressure chamber (PC), an equipment that can neither provide continuous information nor be automated, limiting its use. Recent developments of microtensiometers (MT; FloraPulse sensors), which can continuously measure water tension in woody tissue of the trunk of the tree, can potentially highlight the dynamic nature of plant water relations. Thus, this study aimed to validate and assess the usefulness of the MT by comparing the Ψstem provided by MT with those same measurements from the PC. Here, two irrigation treatments (a control and a deficit treatment) were applied in a pear (Pyrus communis L.) orchard in Washington State (USA) to capture the full range of water potentials in this environment. Discrete measurements of leaf gas exchange, canopy temperature and Ψstem measured with PC and MT were made every two hours for four days from dawn to sunset. There were strong linear relationships between the Ψstem-MT and Ψstem-PC (R2 > 0.8) and with vapor pressure deficit (R2 > 0.7). However, Ψstem-MT was more variable and lower than Ψstem-PC when Ψstem-MT was below −1.5 MPa, especially during the evening. Minimum Ψstem-MT occurred later in the afternoon compared to Ψstem-PC. Ψstem showed similar sensitivity and coefficients of variation for both PC and MT acquired data. Overall, the promising results achieved indicated the potential for MT to be used to continuously assess tree water status.


1995 ◽  
Vol 120 (4) ◽  
pp. 577-582 ◽  
Author(s):  
Amos Naor ◽  
Isaac Klein ◽  
Israel Doron

The sensitivity of leaf (ψleaf) and stem (ψstem) water potential and stomatal conductance (gs) to soil moisture availability in apple (Malus domestics Borkh.) trees and their correlation with yield components were studied in a field experiment. Two drip irrigation treatments, 440 mm (H) and 210 mm (L), were applied to a `Golden Delicious' apple orchard during cell enlargement stage (55-173 days after full bloom). Data collected included ψstem, y leaf, gs, and soil water potential at 25 (ψsoil-25) and 50 cm (ψsoil-50). No differences in midday ψleaf's were found between irrigation treatments. Stem water potential was higher in the H treatment than in the L treatment in diurnal measurements, and at midday throughout the season. Stomatal conductance of the H treatment was higher than the L treatment throughout the day. Stomatal conductance between 0930 and 1530 hr were highly correlated with ψstem. The H treatment increased the percentage of fruit >65 mm, and increased the proportion of earlier harvested fruit reaching marketable size compared to the L treatment. Fruit size in the first harvest and the total yield were highly correlated with ψstem. The degree of correlation between plant water stress indicators and yield component decreased in the following order: ψstem>ψsoil-25,>ψsoil-50>ψleaf. The data suggest that midday ψstem may serve as a preferable plant water stress indicator with respect to fruit size.


2011 ◽  
Vol 38 (5) ◽  
pp. 372 ◽  
Author(s):  
Gregorio Egea ◽  
Ian C. Dodd ◽  
María M. González-Real ◽  
Rafael Domingo ◽  
Alain Baille

To determine whether partial rootzone drying (PRD) optimised leaf gas exchange and soil–plant water relations in almond (Prunus dulcis (Mill.) D.A. Webb) compared with regulated deficit irrigation (RDI), a 2 year trial was conducted on field-grown trees in a semiarid climate. Five irrigation treatments were established: full irrigation (FI) where the trees were irrigated at 100% of the standard crop evapotranspiration (ETc); three PRD treatments (PRD70, PRD50 and PRD30) that applied 70, 50 and 30% ETc, respectively; and a commercially practiced RDI treatment that applied 50% ETc during the kernel-filling stage and 100% ETc during the remainder of the growth season. Measurements of volumetric soil moisture content in the soil profile (0–100 cm), predawn leaf water potential (Ψpd), midday stem water potential (Ψms), midday leaf gas exchange and trunk diameter fluctuations (TDF) were made during two growing seasons. The diurnal patterns of leaf gas exchange and stem water potential (Ψs) were appraised during the kernel-filling stage in all irrigation regimes. When tree water relations were assessed at solar noon, PRD did not show differences in either leaf gas exchange or tree water status compared with RDI. At similar average soil moisture status (adjudged by similar Ψpd), PRD50 trees had higher water status than RDI trees in the afternoon, as confirmed by Ψs and TDF. Although irrigation placement showed no effects on diurnal stomatal regulation, diurnal leaf net photosynthesis (Al) was substantially less limited in PRD50 than in RDI trees, indicating that PRD improved leaf-level water use efficiency.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1949
Author(s):  
Eleonora Cataldo ◽  
Linda Salvi ◽  
Sofia Sbraci ◽  
Paolo Storchi ◽  
Giovan Battista Mattii

Soil management in vineyards is of fundamental importance not only for the productivity and quality of grapes, both in biological and conventional management, but also for greater sustainability of the production. Conservative soil management techniques play an important role, compared to conventional tillage, in order to preserve biodiversity, to save soil fertility, and to keep vegetative-productive balance. Thus, it is necessary to evaluate long-term adaptation strategies to create a balance between the vine and the surrounding environment. This work sought to assess the effects of following different management practices on Vitis vinifera L. cv. Cabernet Sauvignon during 2017 and 2018 seasons: soil tillage (T), temporary cover cropping over all inter-rows (C), and mulching with plant residues every other row (M). The main physiological parameters of vines (leaf gas exchange, stem water potential, chlorophyll fluorescence, and indirect chlorophyll content) as well as qualitative and quantitative grape parameters (technological and phenolic analyses) were measured. Significant differences in gas exchanges related to the different season and inter-row management were observed. C showed more negative values of water potential, due to the grass–vine competition, especially when water availability was lower. The competition exerted by C led to differences in fruit setting with impact on yield; therefrom, significant differences also in sugar and anthocyanic content were observed.


2020 ◽  
Author(s):  
Pablo Berrios ◽  
Abdelmalek Temnani ◽  
David Pérez ◽  
Ismael Gil ◽  
Susana Zapata ◽  
...  

&lt;p&gt;The sensitivity to water stress of different plant water indicators (PWI) at different plot scales (leaf and aerial) was evaluated during the second fruit growth stage of grapefruit (&lt;em&gt;Citrus paradisi&lt;/em&gt; cv. Star Ruby) trees growing in a commercial orchard for a sustainable irrigation scheduling. Trees were drip-irrigated and submitted to two irrigation treatments: (i) a control (CTL), irrigated at 100% of crop evapotranspiration to avoid any soil water limitations, and (ii) a non-irrigated (NI) treatment, irrigated as the control until the 104 days after full bloom (DAFB) when the irrigation was suppressed, until to reach a severe water stress level in the plants (around -2.3 MPa of stem water potential at solar midday). The plant water indicators studied were: stem water potential (SWP); leaf conductance (Lc); net photosynthesis (Pn), and several vegetation indices (VI) in the visible spectral region derived from an unmanned aerial vehicle equipped with a multispectral sensor. The measurements were made at 9, 12 and 18h (solar time) on 50 and 134 DAFB, coinciding with a fruit diameter of 20 and 70 mm, respectively. The correlation analysis between the PWI at leaf scale (SWP, Lc and Pn) and at aerial scale showed relatively poor results, with Pearson correlation coefficients (r values) around 0.6. However, SWP presented the highest r value with the normalized difference vegetation index (NVDI), green index (GI), normalized difference greenness vegetation index (NDGI) and red green ratio index (RGRI) showing the higher coefficients 0.80, 0,80, 0.85 and 0.86, respectively. In addition, a quadratic regression curve fitting was made for the SWP and aforementioned indices, obtaining values &amp;#8203;&amp;#8203;of R&lt;sup&gt;2&lt;/sup&gt; around 0.7 in all cases; the best fit corresponded to SWP = - 4.869 + 15.765 NDGI - 14.283 NDGI&lt;sup&gt;2&lt;/sup&gt; (R&lt;sup&gt;2 &lt;/sup&gt;= 0.749) to predict SWP values between -0.5 and -2.3 MPa. Results obtained show the possibility of using certain vegetation indices to be used in the detection of water stress in adult grapefruits, and thus propose a sustainable and efficient irrigation scheduling.&lt;/p&gt;&lt;p&gt;Funding:&lt;/p&gt;&lt;p&gt;-WATER4EVER is funded by the European Commission under the framework of the ERA-NET COFUND WATERWORKS 2015 Programme&lt;/p&gt;&lt;p&gt;-RIS3MUR REUSAGUA is funded by the Consejer&amp;#237;a de Empresa, Industria y Portavoc&amp;#237;a of the Murcia Region under the Feder Operational Program 2014-2020&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document