scholarly journals Economic efficiency of application of innovative materials and structures in high-rise construction

2018 ◽  
Vol 33 ◽  
pp. 03033 ◽  
Author(s):  
Roman Golov ◽  
Varvara Dikareva ◽  
Roman Gorshkov ◽  
Anatoly Agarkov

The article is devoted to the analysis of technical and economic efficiency of application of tube confined concrete structures in high-rise construction. The study of comparative costs of materials with the use of different supporting columns was carried out. The main design, operational, technological and economic advantages of the tube confined concrete technology were evaluated, conclusions were drawn about the high strength and deformation properties of axial compression of steel tubes filled with high-strength concrete. The efficiency of the tube confined concrete use is substantiated, which depends mainly on the scale factor and percentage of reinforcement affecting its load-bearing capacity.

2014 ◽  
Vol 901 ◽  
pp. 11-14
Author(s):  
In Kyu Kwon

Material strength is one of the most important factors in designing a building. For this reason, many structural steel manufacturers have been trying to develop it. In Korea, SM 570 is one high structural steel that has many merits such as longer span and reduction of construction cost for steel works. However, the fire resistance performance of H-section made of SM 570 has not been evaluated. Especially, in high-rise steel building that can be built with various joint systems like hinged to hinge, hinge to fixed, and fixed to fixed. However, the performance of fire resistant is limited. In this paper, to evaluate the fire resistance of H-section made of SM 570, the advanced fire design was conducted using regressive equation of the mechanical and thermal properties at high temperature, compared with those made of an ordinary structural steel, SS 400. The facts show that hinge to hinge had the lowest load bearing capacity at high temperature. Therefore, to keep the same fire resistance with other types boundary conditions, the more passive fire materials are required.


2013 ◽  
Vol 746 ◽  
pp. 285-288 ◽  
Author(s):  
Evgeniy Valerjevich Korolev ◽  
Alexandr Sergeevich Inozemtcev

The paper presents the results of research aimed at development of nanomodified high-strength lightweight concrete for construction. The developed concretes are of low average density and high ultimate compressive strength. It is shown that to produce this type of concrete one need to use hollow glass and aluminosilicate microspheres. To increase the durability of adhesion between cement stone and fine filler the authors offer to use complex nanodimensional modifier based on iron hydroxide sol and silica sol as a surface nanomodifier for hollow microspheres. It is hypothesized that the proposed modifier has complex effect on the activity of the cement hydration and, at the same time increases bond strength between filler and cement-mineral matrix. The compositions for energy-efficient nanomodified high-strength lightweight concrete which density is 1300...1500 kg/m3 and compressive strength is 40...70 MPa have been developed. The approaches to the design of high-strength lightweight concrete with density of less than 2000 kg/m3are formulated. It is noted that the proposed concretes possess dense homogeneous structure and moderate mobility. Thus, they allow processing by vibration during production. The economic and practical implications for realization of high-strength lightweight concrete in industrial production (in particular, for construction of high-rise buildings) have been justified. The results of industrial testing of new compositions in precast concrete technology are shown.


2021 ◽  
Vol 9 (3) ◽  
pp. 335-346
Author(s):  
Yu. M. Bazhenov ◽  
S-A.Yu. Murtazaev ◽  
D.K-S. Bataev ◽  
A. H. Alaskhanov ◽  
T.S.A. Murtazaeva ◽  
...  

This work is devoted to development of optimum recipes of high-strength concretes based on filled binders with fine-milled anthropogenic mineral filler intended for earthquake resistant high-rise monolithic construction. The optimum recipes of concretes in this work have been developed on the basis of computations and experimental designing of cast concrete mixes with chemical additives and anthropogenic mineral fillers, as well as destructive inspection methods as the most precise for analysis of physicomechanical and deformation properties of concrete. The following raw materials have been used for production of high-strength concretes: natural quartz sands with the fineness modulus F.M. = 1.7-1.8; crushed limestone with the particles sizes of 5-20 mm; water reducing chemical additives and hardening retarder to control specifications of concrete mixes; plain Portland cement, grade PTs 500 D0; anthropogenic mineral additives (fillers) in the form of crushed concrete and ceramic bricks. Optimum recipes of monolithic concretes have been designed using anthropogenic raw materials including normal concrete grades with compressive strength of M30-M40 and high-strength concrete grades of M50-M80, characterized by high homogeneity of cement stone with significantly finer pores and lower shrinkage. Herewith, it has been established that fine-milled anthropogenic mineral filler in the form of crushed concrete and ceramic bricks at the ratio of 70:30, respectively, efficiently influences specifications of concrete mixes on their basis significantly increasing resistance of the mix against sedimentation and water gain. It has been established that the developed high-strength concretes based on filled binders with fine-milled anthropogenic mineral filler are characterized by high freeze–thaw resistance (from F400 to F600) and water tightness (W14 and higher), which is a solid base providing high lifecycle of such concretes.


2018 ◽  
Vol 33 ◽  
pp. 02060 ◽  
Author(s):  
Petr Polskoy ◽  
Dmitry Mailyan ◽  
Sergey Georgiev ◽  
Viktor Muradyan

The increase of high-rise construction volume or «High-Rise Construction» requires the use of high-strength concrete and that leads to the reduction in section size of structures and to the decrease in material consumption. First of all, it refers to the compressed elements for which, when the transverse dimensions are reduced, their flexibility and deformation increase but the load bearing capacity decreases. Growth in construction also leads to the increase of repair and restoration works or to the strengthening of structures. The most effective method of their strengthening in buildings of «High-Rise Construction» is the use of composite materials which reduces the weight of reinforcement elements and labour costs on execution of works. In this article the results of experimental research on strength and deformation of short compressed reinforced concrete structures, reinforced with external carbon fiber reinforcement, are presented. Their flexibility is λh=10, and the cross-section dimensions ratio b/h is 2, that is 1,5 times more, than recommended by standards in Russia. The following research was being done for three kinds of strained and deformed conditions with different variants of composite reinforcement. The results of the experiment proved the real efficiency of composite reinforcement of the compressed elements with sides ratio equal to 2, increasing the bearing capacity of pillars till 1,5 times. These results can be used for designing the buildings of different number of storeys.


2011 ◽  
Vol 147 ◽  
pp. 99-104 ◽  
Author(s):  
Moftah Almadini ◽  
Dusan Kovacevic ◽  
Vlastimir Radonjanin

Experiments on square and circular steel columns filled with light-weight concrete and high strength concrete have been conducted to investigate the contribution of these types of concrete to load bearing capacity of short composite columns. The aim of this research was to determine the effect of two types of concrete filling on behaviour of the composite columns. Thirteen specimens were divided in two groups: steel tubes filled with different type of concrete, with or without reinforcement and RC columns with same dimensions and shape, made of same type of concrete. Comparison was made between load bearing capacity of the steel tubes filled with light-weight concrete, and high strength concrete (with and without reinforcement). All specimens were tested by axial compression until to the failure state realization. Factors which influence the behavior and failure mode, ultimate strength, deflections and stress-strain relation were discussed.


Author(s):  
Nikolay I. Karpenko ◽  
Sergey N. Karpenko ◽  
Alexey N. Petrov

The enhancement of the reinforced concrete plain structures design methods on the basis of the deformation theory of the plasticity of reinforced concrete with cracks by N.I. Karpenko is considered. The deformation model of reinforced concrete with cracks taking into account the deformation diagrams of concrete and reinforcement is used for numerical analysis of a deep beam made of high-strength concrete of class B100. The analysis makes it possible to con­clude that taking into account the actual properties of materials significantly improves the accuracy of computer model­ing. The strength of concrete is the decisive factor determining the mechanism of structural failure and the efficiency of using reinforcement. At the design stage, the most reliable and accurate tool for assessing the operational fitness of pla­nar reinforced concrete structures is computer modeling based on a nonlinear deformation model, taking into account the actual strength and deformation properties of concrete and reinforcement


2020 ◽  
Author(s):  
◽  
Hosein Asgari

Cross-laminated Timber (CLT) is increasingly being used in tall buildings. However, there are some challenges when designing high-rise CLT structures, amongst them the need for novel hold-downs (HD), for shear walls. While commonly used HDs behave as a dissipative connection, the current Canadian Standard for Engineering Design in Wood recommends designing HDs as a non-dissipative connection. As hyperelastic material, an elastomer (rubber) is capable to carry high loads without inelastic deformation. This thesis presents experimental studies at material- and component-levels using a hyperelastic rubber HD solution for CLT walls. A total of 53 quasi-static monotonic and cyclic tests were performed. The HDs exhibited high strength and deformation capacity without any residual deformation after unloading. The shape factor and loaded area of rubber layers were found as the main effective factors on the rubber HD’s response, and an empirical load-displacement relation was also developed based on these parameters.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Zude Ding ◽  
Jincheng Wen ◽  
Xiafei Ji ◽  
Zhihua Ren ◽  
Sen Zhang

The presence of voids or lining thinning directly affects the mechanical behavior of linings, and these defects threaten the safety of tunnel operation. In this study, a series of 1/5-scale model tests was used to investigate the mechanical behavior of normal concrete (NC) linings in consideration of voids and combined defects. Test results showed that the void and combined defects substantially reduced the load-bearing capacity and deformation properties of the linings. The inelastic mechanical behavior of the linings was also significantly affected by the defects. The effects of lining defects located at the spandrel were slightly weaker than those of lining defects located at the crown. As the void size or degree of combined defects increased, the tensile strain at the location of the lining defects also increased. Therefore, the defect position of the linings was easily damaged. The defects considerably reduced the overall deformation of the linings but increased the local deformation. The distribution of lining cracks was concentrated at the defect position. In addition, different failure characteristics of the lining were observed due to the differences in defects.


Sign in / Sign up

Export Citation Format

Share Document