scholarly journals Study of atrazine adsorption kinetics by using an activated carbon synthesised from water hyacinth

2019 ◽  
Vol 116 ◽  
pp. 00015
Author(s):  
Pawinee Deetae ◽  
Patthranit Wongpromrat

In this work, atrazine, one of the most widely used herbicides in Thailand, was removed from water by activated carbon synthesized from water hyacinth. Before adsorption, 3 types of activated carbons used as adsorbents were prepared by different chemical treatment methods; untreated activated carbon (AC), HCl-treated activated carbon (HCl-AC) and NaOH-treated activated carbon (NaOH-AC). After pyrolysis, NaOH-AC became ash, so it was not suitable for using as an adsorbent. Brunauer-Emmett-Teller (BET) and CHNS methods were used to characterised 2 other adsorbents and the results showed that HCl treatment could improve the surface area and carbon content. This led to the better performance of HCl-AC for removing atrazine from water comparing to AC confirming by the adsorption experiments. In addition, the adsorption kinetics of HCl-AC, the best adsorbent in this research, was investigated by fitting with 4 kinetics models. The results showed that pseudo-second-order was the best kinetics model describing that the atrazine adsorption of HCl-AC was limited by adsorption and 2 active sites of adsorbent were required for adsorbing 1 molecule of atrazine.

Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2558 ◽  
Author(s):  
Zhansheng Wu ◽  
Xinhui Wei ◽  
Yongtao Xue ◽  
Xiufang He ◽  
Xia Yang

Activated carbons (ACs) based on apricot shells (AS), wood (W), and walnut shells (WS) were applied to adsorb atrazine in co-solutions. To study the effect of Bisphenol A (BPA) on the adsorption behavior of atrazine, the adsorption performance of ACs for BPA in single solution was studied. The results demonstrated that the adsorption kinetics of BPA fitted the pseudo-second-order model, the adsorption isotherms of BPA followed the Langmuir model. Meanwhile, the adsorption kinetics of atrazine fitted the pseudo-second-order kinetics model and the isotherm was consistent with the Freundlich model both in single solution and co-solution. In addition, competitive adsorption was observed when atrazine coexisted with BPA or humic acid. For the adsorption capacity, the adsorption amount of ASAC, WAC, and WSAC for atrazine obviously decreased by 18.0%, 30.0%, and 30.3% in the presence of BPA, respectively, which was due to the π−π interactions, hydrophobic interactions, and H-bonds, resulting in the competitive adsorption between atrazine and BPA. This study contributes to the further understanding of the adsorption behavior for atrazine in co-solution.


2020 ◽  
Vol 1 (1) ◽  
pp. 11717
Author(s):  
Lívia Katia Dos Santos Lima ◽  
Antônio Vilas Boas Quintiliano Júnior ◽  
André Henrique Zeferino ◽  
Ana Paula Duarte

The textile industry stands out for generating effluents with high levels of dyes, which have a high polluting potential. Among these dyes, the Remazol Brilliant Blue R azo dye, is one of the most used for dyeing wool and cotton, being released in excess on these effluents. Intended for the carcinogenic and mutagenic potential of this type of dyes, several researches are developed in search of economical technologies for their removal. An adsorption is a viable technique, since several materials can be used for this purpose. Bovine bone activated carbon, as it is a residue from the livestock industry that is easily obtained, has been studied as an adsorbent material in the removal of dyes. Therefore, the objective of this project was to evaluate the performance of the adsorption kinetics of the Remazol Brilliant Blue R dye from the effluents using bovine bone activated carbon. The experiments were carried out in batches, with solutions concentrations of 20, 50 and 100 ppm, and the mathematical models of pseudo-first order, pseudo-second order and intraparticle diffusion were adjusted to the experimental data. For concentrations of 20 and 50 ppm, the model that best fits was the pseudo-first order, while for the concentration of 100 ppm the pseudo-second order model obtained the best result with R2 of 0.992. The intraparticle diffusion model showed that the higher the concentration of the dye in solution, the greater the thickness of the boundary layer and that the intraparticle diffusion does not control the adsorption process in any of the study criteria.


2020 ◽  
Vol 10 (7) ◽  
pp. 676
Author(s):  
Huu Son Ta ◽  
Khu Le Van ◽  
Thu Thuy Luong Thi ◽  
Thanh Hoa Ha

The kinetics of phenol adsorption from aqueous solution on activated carbons (ACs) obtained from coffee husk by potassium Hydroxide (KOH) activation at 650 and 750<sup>o</sup>C have been studied in the range of     100-250 mg L<sup>-1</sup> initial phenol concentrations and at the temperatures range of 10 – 40<sup>o</sup>C. Kinetic models for phenol adsorption were evaluated using pseudo-first-order, pseudo-second-order, and Elovich models. The adsorption mechanism was investigated using Reichenberg, Boyd, and Weber and Morris models. The adsorption on coffee husk activated carbon was found to be a fast or speedy process with the adsorption rate, k<sub>2</sub>q<sub>e</sub>, in the range of 0.130 to 0.977 min<sup>-1</sup>. The adsorption process was mainly physical and promoted by chemical sorption and controlled not only by intra-particle diffusion but also by pore diffusion throughout the entire adsorption period.


2020 ◽  
Vol 13 (1) ◽  
pp. 12-20
Author(s):  
Azhaar Radhi Jabbar

This research includes a lab scale work to investigate the feasibility of treating waste water which polluted with dyes exhausted from textile factory by using adsorption process. Three type of activated carbon were prepared using locally available waste material (date stone). Chemical activation method  with (zinc chloride, potassium hydroxide, or phosphoric acid) was used  as activators  to  prepared carbon. Firstly, the materials were carbonized at 275 oC for 90 min and then the carbonized materials were treated with (4 molar) solution of acid, base or salt for 24 hour. Finally, these materials were activated at 600 oC for two hours in the presence of nitrogen gas flow. The resulted activated carbons were checked by its (BET) surface area analysis and surface morphology by SEM. The surface area values were (815, 950,600) m2/g for carbon produced from the activation of date  stone by phosphoric acid, potassium hydroxide or zinc chloride respectively. SEM characterizations show that activated carbons that prepared from potassium hydroxide have higher surface area and good adsorption characteristics than that prepared from activation with phosphoric acid or zinc chloride. The  adsorption process was studied using two types of dyes. The first one is acidic (methyl orange) and the other is basic (bismark brown). The adsorption isotherms and kinetics where investigated for both dyes at temperatures (30,40,50,60)oC for concentration  range  equal to (6-16)mg/l.  The  adsorption data of equilibrium were presented by using two common adsorption isotherm equations. The data was fitted fairly well with Langmuir isotherm for both dyes on all types of prepared activated carbons. The kinetic of adsorption was study by using two kinetic equations, pseudo first order and pseudo second order. The result showed the rapid increase in the rate of adsorption at the initial until equilibrium achieved. Pseudo second order model were represent the data very well with confidence level 0.99.


2012 ◽  
Vol 14 (4) ◽  
pp. 88-94 ◽  
Author(s):  
R.P. Suresh Jeyakumar ◽  
V. Chandrasekaran

Abstract In this work, the efficiency of Ulva fasciata sp. activated carbons (CCUC, SCUC and SSUC) and commercially activated carbon (CAC) were studied for the removal of Cu (II) ions from synthetic wastewater. Batch adsorption experiments were carried out as a function of pH, contact time, initial copper concentration and adsorbent dose. The percentage adsorption of copper by CCUC, SSUC, SCUC and CAC are 88.47%, 97.53%, 95.78% and 77.42% respectively. Adsorption data were fitted with the Langmuir, Freundlich and Temkin models. Two kinetic models pseudo first order and the pseudo second order were selected to interpret the adsorption data.


2014 ◽  
Vol 809-810 ◽  
pp. 907-911
Author(s):  
Jun Long Wang ◽  
Jie Hou ◽  
Ting Jiang ◽  
Yong Jun He ◽  
Yao Dong Liang

Dry waters with an average diameter of 82 μm were prepared by a high speed mixed route. The formaldehyde absorption kinetics of dry waters was investigated by simulating indoor formaldehyde pollution in glass chamber. The results showed that pseudo-second order model could be used to simulate the adsorption process; the adsorption rate was highest in the initial 60 minutes; when the adsorption lasted for 180 minutes, the adsorption reached equilibrium.


2015 ◽  
Vol 74 (11) ◽  
Author(s):  
Riry Wirasnita ◽  
Tony Hadibarata ◽  
Abdull Rahim Mohd Yusoff ◽  
Zainab Mat Lazim

An oil palm empty fruit bunch-derived activated carbon has been successfully produced by chemical activation with zinc chloride and without chemical activation. The preparation was conducted in the tube furnace at 500oC for 1 h. The surface structure and active sites of activated carbons were characterized by means of Fourier transform infrared spectrometry and field emission scanning electron microscopy. The proximate analysis including moisture content, ash content, bulk density, pH, and pH at zero charge was conducted to identify the psychochemical properties of the adsorbent. The results showed that the zinc chloride-activated carbon has better characteristics compared to the carbon without chemical activation.  


Author(s):  
Arnelli ◽  
WP Aditama ◽  
Z Fikriani ◽  
Y Astuti

2013 ◽  
Vol 367 ◽  
pp. 45-49
Author(s):  
Ying Hong ◽  
Ze Hui Zhong ◽  
You Shi Liu

Chitosan nanoparticles were prepared by crosslinkingusing TPP. SEM showed that chitosan nanoparticles were successfully obtained.The adsorption characteristics of chitosan nanoparticles were evaluated. Theresults demonstrated that chitosan nanoparticles were suitable for adsorbent toremoval Pb2+. The parameters for the adsorption of Pb2+by chitosan nanoparticles were also determined. It was shown that chitosannanoparticles were fit for Langmuir’s isotherm model and that the adsorptionkinetics of Pb2+ described by the pseudo-second-order model could bebest.


Sign in / Sign up

Export Citation Format

Share Document