scholarly journals Problems of mining the prospective coal-bearing areas in Donbas

2019 ◽  
Vol 123 ◽  
pp. 01011 ◽  
Author(s):  
Serhii Nehrii ◽  
Tetiana Nehrii ◽  
Leonid Bachurin ◽  
Hanna Piskurska

The prospective coal-bearing areas of Donbas in Ukraine have been identified. Their development will increase the energy security of Ukraine. It has been suggested that the development of these areas will involve mining the coal seams in a weak roof and floor environment, which are characterized by low compressive strength, lower density and a tendency to plastic deformations. The stability has been assessed of the rocks outcrop on the contour of mine roadways for mines operating in these areas. It has been determined that roof rocks in most of these mines belong to a range of groups from very unstable to moderately stable, and the bottom rocks are, in most cases, prone to swelling. This complicates the intensive prospective areas mining with the use of advanced technologies, as well as secondary support for retained goaf-side gateroads with limited yielding property. The mines have been determined, for which this issue is relevant when mining the seams with further increase in the depth. The mechanism of displacement in the secondary supports and has been exemplified and studied using the numerical method. The obtained results allowed us to substantiate the necessity of developing new technical solutions for the protection of gateroads under conditions of prospective Donbas areas.

2021 ◽  
Vol 330 ◽  
pp. 01011
Author(s):  
Anastasia Vargolskikh

The paper discusses the factors that limit the growth of coal production in Kuzbass. They were identified by the results of statistical analysis of the actual production indicators of working faces in eight thick coal seams. Technological solutions for the rational control of hard-to-break roof rocks, the shape and size of coal pillars, which ensure the stability of protected workings and isolation of the worked-out area from endogenous fires, are substantiated.


2020 ◽  
Vol 317 ◽  
pp. 02002
Author(s):  
Alexander Taratorkin ◽  
Victor Derzhanskii ◽  
Igor Taratorkin

The article describes a refined method for design studies of friction disks that are integrated into automotive transmissions. A technique is presented to enable finding the natural frequency spectrum exhibited by disks as distributed mass multicomponent bodies. Grounds are given that explicate the necessity to evaluate the stability of oscillations when high-frequency dynamic processes evolve in a nonlinear system after friction clutches are disengaged and when friction clutches are being engaged and wavelike plastic deformations emerge giving rise to overheated spots. The article also sheds light on specific features inherent in the off-design behavior subsequent to the stopping of the clutch booster and pressure unbalance in the clutch booster plenums. The research studies have produced a number of technical solutions that reduce the amplitude of the high-frequency oscillations, which are generated after friction clutches are disengaged and result in plastic deformations of mating surfaces as well as disturbed axial movability of friction disks. They have substantiated the necessity that the relevant linear velocity should be restricted having determined the boundaries of tolerated linear velocities of revolving friction disks. The article presents results of researching into the processes consequent to pressure unbalance in the friction clutch booster plenums and proposes technical solutions to do away with its adverse effects.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5686
Author(s):  
Piotr Małkowski ◽  
Łukasz Ostrowski ◽  
Łukasz Bednarek

The phenomenon of the floor upheaval occurs in virtually every type of rock mass and at every depth, accompanying the process of excavation of tunnels and headings. Despite its inconvenience, it is rarely studied because of the complexity of the process and the multiplicity of the factors causing deformations in floor rocks. To quantify the effect of the selected factors on floor upheaval, this article presents an analysis of results of in situ measurements carried out in three coal mine roadways at 15 measuring stations. These measurements were taken over varying periods of time, between 129 and 758 days. Groundwater and fault zones intersecting the excavations were considered as the key factors that affect floor upheavals. Therefore, the measurement bases were located at local faults and sites of water inflow. To compare the results, the stations were also located where the rock mass was not exposed to any factors other than stresses resulting from the depth of the excavation. The excavations were driven in various rocks and were located at different depths from 750 to 1010 m. The analyses of the study results show that the floor upheaval always depends on time and can be described in polynomial form: ufl = a·t2 + b·t + c or by a power function: ufl = a·tb. However, the further regression analyses show that roadway’s floor upheaval can be expressed by a complex form using the key parameters determining the phenomena. In the absence of an impact of geological factors on the stability of the excavation, the floor upheaval depends on floor rocks compressive strength σc and Young’s modulus E: ln(ufl)=a·ln(tσc)−bE−c; in the case of rock mass condition affected by water depends on the rock compressive strength reduction after submerging rock in water σcs 6h: ufl=a·t0.5−bσcs 6hσc+c and in the case of fault depends on the fault’s throw f: ufl=a·t0.8+b·f1.2−c. Statistical analysis has shown that the matching of the models to the measurement data is high and amounts to r = 0.841–0.895. Hence, in general, the analysis shows that the floor upheaval in underground excavation in any geological conditions may grow indefinitely.


2021 ◽  
Vol 11 (8) ◽  
pp. 3444
Author(s):  
Sergey A. Lavrenko ◽  
Dmitriy I. Shishlyannikov

The authors focus on the process of potash ore production by a mechanized method. They show that currently there are no approved procedures for assessing the performance of heading-and-winning machines operating in the conditions of potash mines. This causes difficulties in determining the field of application of heading-and-winning machines, complicates the search for implicit technical solutions for the modernisation of existing models of mining units, prohibits real-time monitoring of the stability of stope-based technological processes and makes it difficult to assess the performance of the services concerning mining enterprises. The work represents an aggregate assessment of the performance of heading-and-winning machines for potash mines by determining complex indicators describing the technological and technical levels of organising the work in stopes. Such indicators are the coefficients of productivity and energy efficiency, respectively. Experimental studies have been carried out in the conditions of the potash mine of the Verkhnekamskoye potassium-magnesium salt deposit to assess the performance of the latest and most productive Ural-20R heading-and-winning machines manufactured in Russia. Using the above methodological approaches, this paper shows that the unsatisfactory technological performance of the studied machine is due to the low productivity of the mine district transport. The average productivity coefficient was 0.29. At the same time, high values of the energy efficiency coefficient show that the productivity of the machine is on par with design conditions.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Yu Zheng ◽  
Xudong Luo ◽  
Jinlong Yang ◽  
Wenlong Huo ◽  
Chi Kang

A novel approach is used for fabricating steel slag foam ceramics based on the particle-stabilized foaming method. In this work, steel slag was used as the raw material and propyl gallate (PG) was used as the surface modifier. For the first time, steel slag ceramic foams were successfully fabricated based on particle-stabilized foams. The results show that the stability of the ceramic foams was closely related to the pH value and PG concentration. The porosity and compressive strength could be controlled by changing the solid loading of steel slag and sintering temperature. The porosity of steel slag foam ceramics ranged from 85.6% to 62.53%, and the compressive strength was from 1.74 MPa to 10.42 MPa. The thermal conductivity of steel slag foam ceramics was only 0.067 W (m·K)−1, which shows that it could be used as a thermal insulation material.


Author(s):  
Oleksandr Ahafonov ◽  
◽  
Daria Chepiga ◽  
Anton Polozhiy ◽  
Iryna Bessarab ◽  
...  

Purpose. Substantiation of expediency and admissibility of use of the simplified calculation models of a coal seam roof for an estimation of its stability under the action of external loadings. Methods. To achieve this purpose, the studies have been performed using the basic principles of the theory of elasticity and bending of plates, in which the coal seam roof is represented as a model of a rectangular plate or a beam with a symmetrical cross-section with different support conditions. Results. To substantiate and select methods for studying the bending deformations of the roof in the coal massif containing the maingates, the three-dimensional base plate model and the beam model are compared, taking into account the kinematic boundary conditions and the influence of external distributed load. Using the theory of plate bending, the equations for determining the deflections of the coal seam roof in three-dimensional basic models under certain assumptions have a large dimension. After the conditional division of the plate into beams of unit width and symmetrical section, when describing the normal deflections of the middle surface of the studied models, the transition from the partial derivative equation to the usual differential equations is carried out. In this case, the studies of bending deformations of roof rocks are reduced to solving a flat problem in the cross-section of the beam. A comparison of solutions obtained by the methods of the three-dimensional theory of elasticity and strength of materials was performed. For a beam with a symmetrical section, the deflection lies in a plane whose angle of inclination coincides with the direction of the applied load. The calculations did not take into account the difference between the intensity of the surface load applied to the beam. Differences in determining the magnitude of the deflections of the roof in the model of the plate concerning the model of the beam reach 5%, which is acceptable for mining problems. Scientific novelty. To study the bending deformations and determine the magnitude of the roof deflection in models under external uniform distributed load, placed within the simulated plate, a strip of unit width was selected, which has a symmetrical cross-section and is a characteristic component of the plate structure and it is considered as a separate load-bearing element with supports, the cross-sections of this element is remained flat when bending. The deflection of such a linear element is described by the differential equations of the bent axis of the beam without taking into account the integral stiffness of the model, and the vector of its complete displacement coincides with the vector of the force line. Practical significance. In the laboratory, to study the bending deformations and their impact on the stability of the coal seam roof under external loads, it is advisable to use a model of a single width beam with a symmetrical section with supports, the type of which is determined by rock pressure control and secondary support of the maingate at the extraction layout of the coal mine.


Clay Minerals ◽  
1984 ◽  
Vol 19 (5) ◽  
pp. 857-864 ◽  
Author(s):  
H. G. Midgley

AbstractHydrating high-alumina cement will react with calcium carbonate to form the complex mineral calcium carboaluminate hydrate, 3CaO.Al2O3.CaCO3.12H2O. This mineral is reported to be capable of providing strength in concrete and so may provide an alternative to the minerals normally found in the hydration of high-alumina cement, which may under certain conditions convert to other minerals with a loss in strength. Some doubt has been cast on the stability of calcium carboaluminate hydrate and it has been found that in hydrated high-alumina cement, calcium carboaluminate hydrate decomposes at temperatures in excess of 60°C. Cube compressive strength tests on high-alumina cement and high-alumina cement-calcium carbonate pastes have shown that the latter have a lower strength than pastes made with high-alumina cement alone. When cured at 50°C the high-alumina cement-calcium carbonate pastes show a loss in strength with curing time. Cements made with the high-alumina cement-calcium carbonate mixture always have a lower strength than those made with high-alumina cement alone and so no advantage is gained from their use.


2021 ◽  
Vol 36 (4) ◽  
pp. 61-71
Author(s):  
Serhii Nehrii ◽  
Tetiana Nehrii ◽  
Oksana Zolotarova ◽  
Serhii Volkov

The conditions of coal seam mining in the mines of Ukraine have been considered. The problem of conducting coal mining by longwalls in the conditions of soft adjoining rocks, which concerns the protection of mine roadways located near the face, has been revealed. In such conditions, the existing protective constructions are ineffective due to the fact that they yield and get pressed into the soft rocks of the footwall. This indicated the need for research into the geomechanical state of soft rocks of the footwall. According to the results of known studies on the mechanism of rock mass failure around roadways and the data of physical and mechanical properties of the coal mass, which is represented by soft rocks, the correlation dependence has been obtained, the use of which allowed for the determination of the parameters of the rock deformation diagram and the establishment of the stability criterion of footwall rocks under the protection means and stability conditions of the geotechnical system “protective construction – adjoining rocks.” They are the basis of a new approach to ensure the stability of the roadways, which are supported behind the faces, by controlling the stress state in the system “protective construction – adjoining rocks.” This may be the basis for the development of new methods of protecting roadways in conditions of soft adjoining rocks.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Piotr MAŁKOWSKI ◽  
Zbigniew NIEDBALSKI ◽  
Łukasz BEDNAREK

Ensuring the stability of mining excavations is a crucial aspect of underground mining. For thispurpose, appropriate shapes, dimensions, and support of workings are designed for the given mining andgeological conditions. However, for the proper assessment of the adequacy of the used technical solutions,and the calibration of the models used in the support design, it is necessary to monitor the behavior of theexcavation. It should apply to the rock mass and the support. The paper presents the automatic systemdesigned for underground workings monitoring, and the example of its use in the heading. Electronicdevices that measure the rock mass movements in the roof, the load on the standing support, and on bolts,the stress in the rock mass, are connected to the datalogger and can collect data for a long of time withoutany maintenance, also in hard-to-reach places. This feature enables the system to be widely used, inparticular, in excavations in the vicinity of exploitation, goafs, or in the area of a liquidated exploitationfield.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Wenyu Lv ◽  
Kai Guo ◽  
Jianhao Yu ◽  
Xufeng Du ◽  
Kun Feng

The movement of the overlying strata in steeply dipping coal seams is complex, and the deformation of roof rock beam is obvious. In general, the backfill mining method can improve the stability of the surrounding rock effectively. In this study, the 645 working face of the tested mine is used as a prototype to establish the mechanical model of the inclined roof beam using the sloping flexible shield support backfilling method in a steeply dipping coal seam, and the deflection equation is derived to obtain the roof damage structure and the maximum deflection position of the roof beam. Finally, numerical simulation and physical similarity simulation experiments are carried out to study the stability of the surrounding rock structure under backfilling mining in steeply dipping coal seams. The results show the following: (1) With the support of the gangue filling body, the inclined roof beam has smaller roof subsidence, and the maximum deflection position moves to the upper part of working face. (2) With the increase of the stope height, the stress and displacement field of the surrounding rock using the backfilling method show an asymmetrical distribution, the movement, deformation, and failure increase slowly, and the increase of the strain is relatively stable. Compared with the caving method, the range and degree of the surrounding rock disturbed by the mining stress are lower. The results of numerical simulation and physical similarity simulation experiment are generally consistent with the theoretically derived results. Overall, this study can provide theoretical basis for the safe and efficient production of steeply dipping coal seams.


Sign in / Sign up

Export Citation Format

Share Document