scholarly journals Use of Steel Industry By-products in Sustainable Civil Engineering Applications

2020 ◽  
Vol 161 ◽  
pp. 01117
Author(s):  
Beste Çubukçuoğlu

The concept of sustainability has been growing for many years. In parallel to this popularity, the use of sustainable materials in the construction industry has increased significantly. Sustainable construction materials should be proposed and introduced to the construction industry, mostly as a replacement for cement. Cement is one of the most commonly used construction materials, which produces very high carbon emissions. As the most widely used building material in the world, concrete is predominantly comprised of cement. Therefore, sustainable alternative constituents to cement are required. This study focuses on alternative materials to cement and additionally, alternative materials to naturally available aggregates. The physical, chemical characteristics and mineralogical properties of the proposed materials are investigated and the results are demonstrated in this research study. The findings highlight the environmental and economic potential of replacing cement and other binding materials with steel slag.

2014 ◽  
Vol 980 ◽  
pp. 91-96
Author(s):  
O.A. Johnson ◽  
Napiah Madzlan ◽  
Ibrahim B. Kamaruddin

In the recent years there has been an intensification of policies on sustainable construction materials in the construction industry. This environmental policy has brought about development of various sustainable materials in which Petrovege blocks is one of the outstanding products. This paper investigates the effect of curing age on the compressive strength of the product. Block samples were prepared by adding 8%, 9%, 10%, 11%, 12%, and 13% liquid content of the mixture of vegetable oil and crude oil sludge as a binder after the optimum liquid content has been established. The specimens were cured at different period of time of 48hrs, 72hrs, 96hrs, and 120hrs. Mechanical properties of the products were evaluated. Compressive strength of Petrovege samples varies from 5.31 N/mm2to 18.88 N/mm2indicating that the compressive strength increases with increase in curing age, while decrease in porosity leads to increased compressive strength for the stipulated curing ages. All samples satisfied the minimum requirements in terms of compressive strength, in accordance with all available standards.


2019 ◽  
pp. 658-687 ◽  
Author(s):  
R. V. Ralegaonkar ◽  
M. V. Madurwar ◽  
V. V. Sakhare

Due to ever increasing demand for the conventional construction materials as well as an increase in agro-industrial by-products it is essential to reuse these materials. As a smart city solution this chapter briefs an overview for the application of alternate raw materials as a principal source for the development of sustainable construction materials. The potential application of the discussed raw materials is elaborated as cementitious material, the aggregates as well as alternative reinforcement material. To understand the process of application, sustainable masonry product development is discussed in detail. In order to evaluate the feasibility of the raw material, the necessary physico-chemical test evaluation methods are also briefed. The developed end product performance evaluation is also discussed by desired tests as recommended by standards. The chapter concludes with a positive note that reuse of agro-industrial by-products is a feasible solution for the smart city development.


In recent decades, there is a sprut in the growth of the construction industry. Aggregates are one of the main ingredients for making concrete. Depletion of natural resources of sand and the effect of mass production of cement on sustainable environment, need studies on the use of alternative materials. On the other hand, dumping of wastes from the industries are piling up resulting in the pollution of the environment. By considering the above facts, severe studies are focused on partial replacement of river sand with alternatives like copper slag, steel slag, quarry dust, etc., The outcome of these studies shows that the alternate materials enlarge the mechanical and durability properties of concrete. The optimum dose of alternate materials to replacement of sand is evaluated. In this paper, technical papers published by researchers are studied, discussed and compared


2021 ◽  
Vol 20 (2) ◽  
pp. 359-370
Author(s):  
S. Jagan ◽  
◽  
T. R. Neelakantan ◽  
R. Gokul Kannan ◽  
◽  
...  

Increased development in the field of construction with the use of sand, stones etc. depletes the natural resources and thus resulted in the scarcity of construction materials. Furthermore, generation of waste from several industries such as steel slag, copper slag, blast furnace slag etc. are being dumped in the nearby landfills leading to disposal problems. The scarcity of construction materials necessitated the utilization of suitable alternative materials with equivalent physical and chemical characteristics. This paper investigates the suitability of copper slag (CS) as a substitute to natural fine aggregate (NFA) in the concrete. The concrete mixes are prepared with 0%, 10%, 30%, 50%, 70% and 100% of copper slag at 0.45 w/c ratio. The behaviour of CS in the concrete was assessed by hardened properties such as compression, tension and flexure at 7, 14, 28 and 90 days and durability properties such as water absorption, porosity and chloride ion penetration at 56 days. Results indicate that the replacement of CS beyond 50% affects properties of the concrete; however increased curing improved the properties of the concrete at higher replacement levels. Characterization studies such as XRD and SEM was performed to examine the effect of CS on the properties of the concrete.


2017 ◽  
Vol 10 (4) ◽  
pp. 143
Author(s):  
Mona Baglou ◽  
Parviz Ghoddousi ◽  
Mohsen Saeedi

Construction industry regarded as one of the key aspects of achieving the goals of sustainable development in communities. In this regard, the choice of building materials is one of the key challenges in order to improve project performance with respect to sustainable development indicators and the use of sustainable materials, is an effective step towards achieving sustainable construction. This research uses information and evidence, interview and questionnaire prepared (by five points Likert scale method). Also, it has provided expert opinions related indicators widely used in a construction materials, manufacturing process and defining the impact of the production of these materials on sustainable development deals. Validity and reliability of the questionnaires were also performed (with Cronbach's alpha method). As a result of this research, Cement was identified as the most unsustainable material, after that Steel and then Brick and Glass were located with a wide margin. So Light concrete block, Gypsum, Stone, Lime, and Concrete were identified as the most sustainable materials according to existing indicators respectively. The consequences of this study can help the project executors in order to promote the use of sustainable building materials in construction and also industries will be aware of the impact of the sustainability indicators on their products.


2014 ◽  
Vol 634 ◽  
pp. 121-130 ◽  
Author(s):  
Maura Berger Maltez Melchert ◽  
Marcelo Mendes Viana ◽  
Jo Dweck

This paper presents the study of the simultaneous use of two residual catalysts (RAl and RNi) with type II Portland cement, in order to avoid environmental impacts and to use of the solidified products as structural sustainable materials. The solidification/stabilization (S/S) was evaluated by thermogravimetric analysis, X ray diffraction, leaching and compressive strength tests. Mortars with water/cement mass ratio equal to 0.5 were prepared, into which, different percentual masses of each waste were added. The main phases formed due to the retarding and accelerating actions of each waste were evaluated by thermogravimetry and X ray diffraction after 28 days of hydration. The leaching tests done with the solidified mortars presented values of Ni and Al contents below maximum accepted limits, indicating that they attend to environmental legislation, as well as eliminate the original environmental impact of the original wastes. Mortars evaluated after 28 days by compressive strength tests, presented acceptable results for their possible use as construction materials.


2021 ◽  
Vol 11 (2) ◽  
pp. 629
Author(s):  
Sergio A. Zamora-Castro ◽  
Rolando Salgado-Estrada ◽  
Luis Carlos Sandoval-Herazo ◽  
Roberto Angel Melendez-Armenta ◽  
Erick Manzano-Huerta ◽  
...  

The use of concrete in civil infrastructure is highly demanded in structural and nonstructural elements. However, the high production of concrete could lead to severe pollution in the world. This pollution can be decreased using sustainable materials mixed with cement to obtain sustainable concrete. These sustainable materials include reinforcing fibers (e.g., steel, polypropylene, carbon fibers), recycled materials (e.g., tire rubber, crushed glass, plastic, industrial waste) as well as organic and inorganic elements as concrete aggregates and reinforcement elements. The sustainable construction materials can reduce the amount constitutive elements of concrete required for civil constructions. In addition, some sustainable materials added to cement could improve some properties of the concrete, like the compressive and flexural strength of concrete structural elements. Thus, the maintenance requirements or early replacement of these structural elements could be decreased. This review presents recent investigations about the performance of different sustainable concrete types. In addition, we include the effects on the mechanical properties of the concrete caused by the incorporation of several sustainable materials. In addition, recommendations for the use and testing of sustainable concrete are reported. These materials have potential applications in the sustainable concrete infrastructure in future smart cities.


2021 ◽  
Vol 13 (5) ◽  
pp. 2454
Author(s):  
Jason Maximino C. Ongpeng ◽  
Ernesto J. Guades ◽  
Michael Angelo B. Promentilla

The construction industry faces a challenging situation in attaining sustainable development goals. The carbon footprint of the production and use of construction materials such as the use of ordinary Portland cement in concrete products is still on the rise despite of many alternatives and technologies. In this paper, the local cross-organizational learning approach (COLA) and a systematic review of academic and professional literatures were applied in analyzing the use of fly ash as a geopolymer in the Philippine construction industry. Three primary stakeholders were considered: academe, professional organizations, and industry. Documents from each stakeholder were collected, with keywords including sustainability, fly ash, and geopolymer. These documents included published materials, newsletters, department orders, codes, and policies. Text analytics throughout the documents were applied using the Latent Dirichlet Allocation model, which uses a hierarchal Bayesian-modelling process that groups set of items into topics to determine the maturity level of the organizational learning. An adoption framework is proposed aligning COLA with the awareness, interest, desire, and action (AIDA) funnel model. Results show that the organizational maturity until optimization of academe is sufficient towards interest and desire, while industry is highly encouraged to increase organizational maturity from managed to optimization towards desire and action. Factors such as organizational intelligence (OI) and organizational stupidity (OS) are to be considered in balancing critical thinking across organizations. Further studies are recommended by considering the use of COLA with ASEAN organizations in the development of sustainable construction materials.


2021 ◽  
Vol 13 (17) ◽  
pp. 9938
Author(s):  
Nuno Cristelo ◽  
Fernando Castro ◽  
Tiago Miranda ◽  
Zahra Abdollahnejad ◽  
Ana Fernández-Jiménez

The sustainability of resources is becoming a worldwide concern, including construction and building materials, especially with the alarming increase rate in global population. Alternative solutions to ordinary Portland cement (OPC) as a concrete binder are being studied, namely the so-called alkali-activated cements (AAC). These are less harmful to the environment, as lower CO2 emissions are associated with their fabrication, and their mechanical properties can be similar to those of the OPC. The aim of developing alkali-activated materials (AAM) is the maximization of the incorporated recycled materials, which minimises the CO2 emissions and cost, while also achieving acceptable properties for construction applications. Therefore, various efforts are being made to produce sustainable construction materials based on different sources and raw materials. Recently, significant attention has been raised from the by-products of the steelmaking industry, mostly due to their widespread availability. In this paper, ladle slag (LS) resulting from steelmaking operations was studied as the main precursor to produce AAC, combined with phosphating bath sludge—or phosphate sludge (PS)—and aluminium anodising sludge (AS), two by-products of the surface treatment of metals, in replacement rates of 10 and 20 wt.%. The precursors were activated by two different alkaline solutions: a combination of commercial sodium hydroxide and sodium silicate (COM), and a disposed solution from the cleaning of aluminium extrusion steel dies (CLE). This study assesses the influence of these by-products from the steelmaking industry (PS, AS and CLE) on the performance of the alkali-activated LS, and specifically on its fresh and hardened state properties, including rheology, heat of hydration, compressive strength and microstructure and mineralogy (X-ray diffraction, scanning electron microscopy coupled with energy dispersive spectroscopy and Fourier transform infra-red. The results showed that the CLE had no negative impact on the strength of the AAM incorporating PS or/and AS, while increasing the strength of the LS alone by 2×. Additionally, regardless of the precursor combination, the use of a commercial activator (COM) led to more fluid pastes, compared with the CLE.


Sign in / Sign up

Export Citation Format

Share Document