scholarly journals Experimental study on the basic physical properties of diesel contaminated soil

2020 ◽  
Vol 165 ◽  
pp. 02008
Author(s):  
Xiaohong He ◽  
Fan Liu ◽  
Guang Li ◽  
Hai Lu

In order to study the change of the properties of petroleum contaminated soil, the samples of diesel contaminated soil with different degrees of pollution were prepared manually, and their basic physical properties were tested through the particle test, specific gravity test and liquid plastic limit test. The results show that the diesel oil has a great influence on the particle size composition of soil, and the diesel oil makes the content of silt decrease, while the clay increase obviously; the specific gravity of soil sample decreases with the increase of oil content, and it is smaller than the proportion of unpolluted soil sample; the influence of diesel oil on the liquid-plastic limit of soil is different, the plastic limit of soil decreases with the increase of oil content, and the liquid limit increases first at a certain oil content, it reaches a peak value and then decreases.

2011 ◽  
Vol 374-377 ◽  
pp. 336-338 ◽  
Author(s):  
Ling Tong ◽  
Wei Sheng Chen ◽  
Xi Lai Zheng ◽  
Mei Li

Atterberg limit tests were preformed on diesel oil contaminated soil and crude oil contaminated soil. The results show that Atterberg limits reduced with increasing of diesel oil content. When crude oil content changed from 0 to 8%, it has little effect on Atterberg limits. However, it rose from 8% to 16%, plastic limit slightly decreased, but liquid limit increased remarkably. A "pseudo-viscosity" caused by crude oil is the key factor for this phenomenon.


2021 ◽  
Vol 4 (3) ◽  
pp. 01-04
Author(s):  
Abdela Befa

The genus Rue (Ruta chalepensis) is an aromatic medicinal plant used in the folk as an herbal remedy medicine for the treatment of a variety of disorders in Ethiopia. Information about the effects of drying methods and storage days on essential oil physical properties is limited. The fresh leaf of rue was collected from the Wondo Genet Agriculture research center and was subjected to sun and shade drying methods and four storage days (0,5,10, and 15) days for each day's moisture content and essential oil extraction using hydro distillation. The obtained essential oils were analyzed for physical properties (specific gravity and refractive index). The highest value of moisture content in percent was recorded at 0-day storage days with the value of 73.533 and the lowest one was recorded at 15-day sundry with the value of 8.400. The highest and lowest value of essential oil content in volume by weight in percent was 0.673 and 0.174 at 0 day and 10-day sun, respectively. The highest and lowest value of essential oil content weight by weight in percent was 0.996 and 0.287 at 0 day and 15-day sun, respectively. The results showed that the rue dried under shade had a higher level of moisture content, essential oil content, volume by weight and weight by weight, specific gravity, and refractive index compared to the rue leaf dried under sun-drying methods. In the case of storage days in all parameters except refractive index and specific gravity, the rue fresh leaf (0 days) was higher in moisture content and essential oil contents compared to others storage days. This study provides evidence that drying herbs for different storage days and different drying methods affect the essential oil content and physical properties of essential oil.


2022 ◽  
Vol 961 (1) ◽  
pp. 012030
Author(s):  
Teba A Abd ◽  
Mohammed Y Fattah ◽  
Mohammed F Aswad

Abstract The application of appropriate chemicals is a widely used strategy for soil stabilization. The drive of this study is to determine the possibility of using the biopolymer carboxymethyl cellulose as an environmentally acceptable soil stabilizer. In this work, Atterberge limits tests, specific gravity, compaction, and consolidation tests were used to determine the engineering parameters of soils treated with varying amounts of biopolymer. Additionally, changes in the morphological properties of the soft soils were evaluated using scanning electron microscopy (SEM). It was estimated that as the soil’s biopolymer content increases, the specific gravity drops down, though the optimum water content (OMC) is extended. The outcomes showed diverse effects on Atterberg’s limits by cumulative the liquid limit(LL) and plasticity index (PI) though decreasing the plastic limit as the bio-polymer content increases. By the addition in polymer gratified, the combination boundaries (Solidity index Cc and recompression index Cr) decline.


2014 ◽  
Vol 638-640 ◽  
pp. 1408-1413
Author(s):  
Bin Zhi ◽  
Liang Yang ◽  
En Long Liu

The cement-lime treated loess soils and cement-treated loess soils are widely used all over the world, but their strength features and physical mechanism are investigated few at the moment. The cement-lime treated loess soil samples and cement-treated loess soil samples were prepared according to their weight ratio and tested to study their physical indices and strength varying with age. The tested results demonstrate that: (i) The content of cement has great influence on the liquid limit and plastic limit of the samples. With the increase of adding content of lime, the average plasticity indices also increase gradually, and the values of plastic limits of the samples will also increase; (ii) The stregnth of the samples increases with the increase of curing age, which is affected by many factors including treated materials, compatcion work, water content, and age.


Author(s):  
Solomon I. Adedokun ◽  
Johnson R. Oluremi ◽  
Damilare S. Obebe

Effect of glass fines and cement as a composite mixture on the geotechnical properties of a poor lateritic soil obtained from a borrow pit at Aroje, Ogbomoso, Nigeria was investigated as a reuse method of managing wasted glass. Glass fines up to 12% at intervals of 4% by mass of the soil sample were added to the lateritic soil stabilized with cement of 0, 2, 4, and 6% by mass of the soil sample. Sieve analysis, Atterberg limit, British Standard (BS) Compaction, California Bearing Ratio (CBR) and Unconfined Compressive Strength (UCS) tests were conducted on the stabilized soil specimens. Results showed that Liquid Limit (LL), Plastic Limit (PL) and Plasticity Index (PI) decreased while compaction and UCS of the lateritic soil increased from 0 to 8% addition of glass fines. The CBR of the soil increased continuously from 0 to 12% glass contents. However, addition of cement increased the LL and PI while it decreased the PL between 0 and 4% but increased beyond this range. The compaction, UCS and CBR of the stabilized soil increased significantly with increasing cement content. Hence, the soil can be stabilized with the addition of 8% glass fines and 6% cement content to be used as improved subgrade material for construction of light trafficked pavement.


Author(s):  
Vivek Kumar Agrawal

Abstract: In the project report, an attempt is made to design a road, based on the principles of pavement design and cost analysis of y two methods (Group Indexed and CBR Method). On the existing alignment of the road, soil samples are collected for the determination of soil characteristics like consistency limits, sieve analysis, C.B.R. values etc. Based on this the thickness of the pavement (flexible) is designed. The alignment of the road is also designed and fixed by surveying and leveling. The total road length being 497 meters of which, one section is 247m, other is 200m and the third section is 50m. The site selected for this study is of village road near Korba, Korba district of Chhattisgarh, India. Keywords: GI Method, Flexible Pavement, CBR Method, Liquid Limit Test, Plastic Limit, Standard Proctor test, OMS & MDD.


2019 ◽  
Vol 14 (1-2) ◽  
pp. 33-38
Author(s):  
I. N. Matveeva ◽  
V. V. Tolmachev

Introduction. The article presents results of developing a certified reference material for the physical properties of the soil clay (loam). The certified characteristics of the reference material are as follows: moisture content at the liquid limit via fall-cone test, moisture content at the plastic limit, soil particle density via pycnometer method.Materials and methods. The certified values of the physical properties of the soil clay (loam) were determined using the method of interlaboratory metrological experiment.Results. The bounds of absolute error of the certified values are as follows: 1.9 % for moisture content at the liquid limit via the fall-cone test, 1.5 % for moisture content at the plastic limit, 0.03 g/cm3 for soil particle density. The validity period of the certified reference material is 5 years.Discussion and conclusion. The developed reference material was registered in the State Register of type-approved reference materials as GSO 11038–2018. The reference material is aimed at: controlling the accuracy of the measurement results of certified characteristics; conducting interlaboratory comparisons; testing laboratories proficiency.


2014 ◽  
Vol 10 (2) ◽  
Author(s):  
Dandung Novianto ◽  
Supiyono .

Dandung Novianto1 & Supiyono2ABSTRACTLand in the northern Karangploso a lot of clay and road conditions are not yet paved area slopes Arjuno especially so with much rain like this to go down to the sub-wheel motorcycle must be given chain. With the state’s basic research is done, by mixing soil with lime. Research made by mixing soil and chalk in the four comparisons. The first native land. Both the original soil mixed with chalk 5%. The third native soil mixed with chalk 7.5%. The four original soil mixed with chalk 10%. Each of these sought specific gravity, liquid limit, plastic limit and plasticity index on the original soil, mixing 5%, 7.5% and 10%. From the test results, can be summed up as follows: The preconsolidation pressure original land is 0.66. Mixing soil with chalk, the most optimal to raise the preconsolidation pressure is mixing 10%. The pressure value Preconsolidation the mixing of 10% is 2.5.Key Words : Chalk, Clay and Preconsolidation Pressure.


Geotechnics ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 59-75
Author(s):  
Brendan C. O’Kelly

Among the most commonly specified tests in the geotechnical engineering industry, the liquid limit and plastic limit tests are principally used for (i) deducing useful design parameter values from existing correlations with these consistency limits and (ii) for classifying fine-grained soils, typically employing the Casagrande-style plasticity chart. This updated state-of-the-art review paper gives a comprehensive presentation of salient latest research and understanding of soil consistency limits determinations/measurement, elaborating concisely on the many standardized and proposed experimental testing approaches, their various fundamental aspects and possibly pitfalls, as well as some very recent alternative proposals for consistency limits determinations. Specific attention is given to fall cone testing methods advocated (but totally unsuitable) for plastic limit determination; that is, the water content at the plastic–brittle transition point, as defined using the hand rolling of threads method. A framework (utilizing strength-based fall cone-derived parameters) appropriate for correlating shear strength variation with water content over the conventional plastic range is presented. This paper then describes two new fine-grained soil classification system advancements (charts) that do not rely on the thread-rolling plastic limit test, known to have high operator variability, and concludes by discussing alternative and emerging proposals for consistency limits determinations and fine-grained soil classification.


2020 ◽  
Vol 14 (1) ◽  
pp. 278-285
Author(s):  
Hai-Bang Ly ◽  
Binh Thai Pham

Aims: Understanding the mechanical performance and applicability of soils is crucial in geotechnical engineering applications. This study investigated the possibility of application of the Random Forest (RF) algorithm – a popular machine learning method to predict the soil unconfined compressive strength (UCS), which is one of the most important mechanical properties of soils. Methods: A total number of 118 samples collected and their tests derived from the laboratorial experiments carried out under the Long Phu 1 power plant project, Vietnam. Data used for modeling includes clay content, moisture content, specific gravity, void ratio, liquid limit and plastic limit as input variables, whereas the target is the UCS. Several assessment criteria were used for evaluating the RF model, namely the correlation coefficient (R), root mean squared error (RMSE) and mean absolute error (MAE). Results: The results showed that RF exhibited a strong capability to predict the UCS, with the R value of 0.914 and 0.848 for the training and testing datasets, respectively. Finally, a sensitivity analysis was conducted to reveal the importance of input parameters to the prediction of UCS using RF. The specific gravity was found as the most affecting variable, following by clay content, liquid limit, plastic limit, moisture content and void ratio. Conclusion: This study might help in the accurate and quick prediction of the UCS for practice purpose.


Sign in / Sign up

Export Citation Format

Share Document