Study on the Mechanical Properties of Lime-Cement-Treated Loess Soils

2014 ◽  
Vol 638-640 ◽  
pp. 1408-1413
Author(s):  
Bin Zhi ◽  
Liang Yang ◽  
En Long Liu

The cement-lime treated loess soils and cement-treated loess soils are widely used all over the world, but their strength features and physical mechanism are investigated few at the moment. The cement-lime treated loess soil samples and cement-treated loess soil samples were prepared according to their weight ratio and tested to study their physical indices and strength varying with age. The tested results demonstrate that: (i) The content of cement has great influence on the liquid limit and plastic limit of the samples. With the increase of adding content of lime, the average plasticity indices also increase gradually, and the values of plastic limits of the samples will also increase; (ii) The stregnth of the samples increases with the increase of curing age, which is affected by many factors including treated materials, compatcion work, water content, and age.

2010 ◽  
Vol 47 (3) ◽  
pp. 259-266 ◽  
Author(s):  
Kamil Kayabali ◽  
Osman Oguz Tufenkci

The undrained shear strength of remolded soils is of concern in certain geotechnical engineering applications. Several methods for determining this parameter exist, including the laboratory vane test. This study proposes a new method to estimate the undrained shear strength, particularly at the plastic and liquid limits. For 30 inorganic soil samples of different plasticity levels, we determined the Atterberg limits, then performed a series of reverse extrusion tests at different water contents. The plastic and liquid limits are derived from the linear relationship between the logarithm of the extrusion pressure and water content. The tests show that the average undrained shear strength determined from the extrusion pressures at the plastic limit is about 180 kPa, whereas the average undrained shear strength at the liquid limit is 2.3 kPa. We show that the undrained shear strength of remolded soils at any water content can be estimated from the Atterberg limits alone. Although the laboratory vane test provides a reasonable undrained shear strength value at the plastic limit, it overestimates the undrained shear strength at the liquid limit and thus, care must be taken when the laboratory vane test is used to determine undrained shear strengths at water contents near the liquid limit.


Lateritic soils at Otun Ekiti, Ekiti state, southwestern Nigeria were investigated with respect to their geotechnical properties and their suitability for subgrade and sub – base construction materials. Four disturbed lateritic soil samples (sample A, B, C and D) were selected for the various laboratory techniques. The grain size analyses, the specific gravity tests, the atterberg limit tests, compaction, California bearing ratio and shear box tests were carried out on the samples. The grain size analysis shows that sample A is gravelly silt-clayey sand. Sample B is silt – clayey gravel composition. Sample C is gravelly silt-clayey while Sample D is silt-clayey gravel. Atterberg consistency limit test indicate that sample A has 30.0%, liquid limit 19.5% plastic limit, 10.5% plasticity index, 9.1% shrinkage limit. Sample B has liquid limit of 27.0%, 16.2% plastic limit, 10.8% plasticity index and 7.4% shrinkage limit. Sample C has a liquid limit of 32.4%, plastic limit of 15.6%. It has a plastic index of 16.8%, Shrinkage limit of 9.7% while Sample D has a liquid limit of 36.2%, plastic limit of 17.7%. It has a plastic index of 18.5% and 11.1% as shrinkage limit. Thus, the soil is classified to be intermediate plasticity which can be used for sub – grade and sub – base materials. The soil samples are above the activity (A) line in the zone of intermediate plasticity (CL) which suggests that they are inorganic soils. Based on engineering use chart, the workability as construction engineering is good to fair particularly as erosion resistance in canal construction. However, the high shrinkage limit may also reduce erosion in this area because of cohesion of the plastic clay material. The California Bearing Ratio (CBR) values are within 2 – 3% (mean = 2.75%) and 2 - 4% (mean = 2.75%) in sample A and sample B respectively while California Bearing Ratio (CBR) of 2 - 4% (mean = 2.75%) and 2 – 3% (mean = 2.75%) in sample C and sample D respectively. This implies that the materials can be used as a sub-grade to base course material for support of flexible pavements. The compaction tests for the optimum water content for sample A is 15.0% and 13.0% for standard and modified proctor respectively. The standard and modified proctor for sample B is 15.0% and 14.0% respectively. The compaction tests for the optimum water content for sample C and D is 15.0% and 14.0% for standard and modified proctor respectively. The compaction tests for Sample A indicate a higher fine fraction and thus a higher optimum moisture content while sample B, C and D has higher coarse fraction with lower optimum moisture content. The cohesion falls within 70-90Kpa (mean = 79Kpa) and the angle of internal friction ranges from 260 - 320 with mean of 280 for standard and modified compaction energies respectively. The results obtained from geotechnical analysis suggest that the soil is good to fair as erosion resistance in canal construction because of its high bearing capacity and it can also be used as sub – grade and base course in road construction. Keywords: Lateritic soil, Construction, Erosional and Geotechnical.


2017 ◽  
Vol 14 (1) ◽  
pp. 62 ◽  
Author(s):  
Budijanto Widjaja ◽  
Priscillia Sundayo

For fine soils, the most common laboratory tests are Atterberg limits, i.e. plastic andliquid limits. This paper presents two standards for determining liquid limit: ASTM and BritishStandards. Both standards use Casagrande cup and fall cone penetrometer tests. In spite of thefact from its a dvantage and shortcoming, fall cone penetrometer tends the minimum operatormistakes comparing to Casagrande cup. Moreover, a lack for determining plastic limit using byrolling soil samples with three mm in diameter also is caused by operator error. To reduce thathuman error, Lee and Freeman recommend using fall cone penetrometer to obtain plastic andliquid limits by a combination of two distinct weight of cones. In this research, tests wereconducted using two combinations of two different weight of cones. There are 12 remoldedsamples taken from Java and Madura islands. A combination using cones with single anddouble standard weight gives a better result that a combination with single and triple standardweight. The contribution of this research at least gives an alternative way to determine plasticand liquid limits using fall cone penetrometer test. Abstrak: Untuk penyelidikan tanah geoteknik, umumnya pada tanah butir halus diujibatas-batas Atterberg yaitu berupa batas cair dan batas plastis. Makalah ini menyajikandua standar pengujian untuk batas cair yaitu standar ASTM dan British. Kedua standartersebut masing-masing menggunakan Casagrande cup dan fall cone penetrometer. Di balikkelebihan dan kekurangannya, fall cone penetrometer cenderung memberikan nilaikesalahan operator yang lebih rendah dibandingkan dengan Casagrande cup. Selain itu,dengan standar untuk menentukan batas plastis juga memiliki kekurangakuratan karenaproses penggulungan tanah dengan diameter 3 mm tergantung kepada pengalaman operator.Dengan tujuan untuk mengurangi kesalahan manusia tersebut, Lee dan Freemanmengusulkan penggunaan fall cone penetrometer test untuk menentukan batas plastisselain batas cair dengan menggunakan kombinasi dari dua berat konus yang berbeda.Di dalam penelitian ini, pengujian dilakukan dengan menggunakan dua macamkombinasi dua berat konus yang berbeda. Sampel tanah yang diuji adalah sampelremolded sebanyak 12 buah yang tersebar lokasi pengambilan sampelnya di Pulau Jawa danMadura. Hasil penelitian menunjukkan bahwa penggunaan kombinasi konus standar dankonus dengan berat dua kali berat konus standar memberikan hasil yang lebih baikdibandingkan dengan kombinasi konus standar dan konus dengan tiga kali berat konusstandar. Kontribusi penelitian ini sekurang-kurangnya memberikan alternatif lainpenentuan batas plastis dan batas cair dengan menggunakan fall cone penetrometer test.Kata kunci: batas cair, batas plastis, metode Lee dan Freeman, fall cone penetrometer,variasi konus


2021 ◽  
Vol 8 (1-2) ◽  
pp. 26-31
Author(s):  
Adebola Adekunle ◽  
Fidelis Nkeshita ◽  
Adetayo Akinsanya

This study investigated the influence of leachate prepared from Telfairia occidentalis on the geotechnical and geochemical properties of termite mound soil obtained from the premises of the federal university of agriculture, Abeokuta, south-western Nigeria. The termite mound soil samples were collected from three different locations and each sample collected was contaminated by mixing with leachates in percentage increments of 0% 10%, 15% and 20% of dry weight of the air-dried soil. The soil samples were subjected to Atterberg limits and hydraulic conductivity tests for geotechnical observation and X-ray fluorescence tests for geochemical tests. The range of values for the geotechnical analyses were obtained as; plastic limit (9.1% – 14.2%), liquid limit (28.6 % – 61%), plasticity index ((18.2% – 49.5%) and hydraulic conductivity (1.85 – 4.1 x 10-8) cm/sec) with a resultant reduction in the plastic limit, liquid limit and plasticity index values but an increase in the hydraulic conductivity of the samples as the leachate concentration increased. The results from X-ray fluorescence analyses after 20% leachate contamination showed that the major elemental chemical composition for the three samples were comprised of SiO2 (56.25 – 56.5%), Al2O3 (28.42 – 28.50%), Fe2O3 (4.46 – 6.5%), TiO2 (1.08 – 1.23%), CaO (1.45 – 1.60%), P2O5 (0 – 0.04%), K2O (0.9 – 6.1%) and MnO (0.02 – 4.7%). There was a marginal alteration of the indices with the values inferring the presence of a minimum composition of feldspar and a major composition of quartz-rich minerals and thus lending more credence to the presence of silicates as shown from the X-ray fluorescence results. It also infers that the termite mounds are predominantly made from sand materials. The termite soil samples obtained from the aforementioned locations may not be suitable for engineering works unless stabilization procedure is adopted.


2019 ◽  
Vol 9 (2) ◽  
pp. 93-99
Author(s):  
Hunar F. Hama Ali ◽  
Ahmed J. Hama Rash ◽  
Madeh I. Hama kareem ◽  
Daban A. Muhedin

This paper addresses the correlation between the liquid and/or plastic limits with the compaction characteristics, maximum dry density, and optimum moisture content (OMC), for fine-grained soils. In the previous studies, several attempts have been made to identify these two important parameters from other simple soil properties such as index soil properties. Some concluded that liquid limit shows a good correlation with compaction characteristics, while others observed that plastic limit does. In this work, many soil samples have been taken from various locations around Koya city and the required tests have been carried out. The results have been illustrated to identify whether soil index properties can correlate with the compaction characteristics. It is concluded that neither plastic limit nor liquid limit can provide an adequate correlation with maximum dry density and OMC. Contrary to the literature, liquid limit provides better correlations.


2020 ◽  
Vol 165 ◽  
pp. 02008
Author(s):  
Xiaohong He ◽  
Fan Liu ◽  
Guang Li ◽  
Hai Lu

In order to study the change of the properties of petroleum contaminated soil, the samples of diesel contaminated soil with different degrees of pollution were prepared manually, and their basic physical properties were tested through the particle test, specific gravity test and liquid plastic limit test. The results show that the diesel oil has a great influence on the particle size composition of soil, and the diesel oil makes the content of silt decrease, while the clay increase obviously; the specific gravity of soil sample decreases with the increase of oil content, and it is smaller than the proportion of unpolluted soil sample; the influence of diesel oil on the liquid-plastic limit of soil is different, the plastic limit of soil decreases with the increase of oil content, and the liquid limit increases first at a certain oil content, it reaches a peak value and then decreases.


2020 ◽  
Vol 8 (1) ◽  
pp. 22
Author(s):  
G.O Adunoye ◽  
A.A Ojo ◽  
A.F Alasia ◽  
M.O Olarewaju

The importance of soil compaction for civil engineering construction and application cannot be over-emphasised. To perform soil compaction, numerous number of samples are required, with considerable time and laborious laboratory activities. This has necessitated the need to find models for the prediction of compaction characteristics, using easily determined soil properties. This work therefore undertook a study of the correlation potential of compaction characteristics and Atterberg limits of soils, with a view to modelling compaction characteristics, using Atterberg limits. To achieve this aim, soil samples were obtained from selected locations within Obafemi Awolowo University campus, Ile-Ife, Nigeria. Preliminary, Atterberg limits and compaction tests were conducted on the soil samples, using standard procedure. Using Microsoft Excel and Xuru’s Regression tool, the laboratory test results were used to develop relationships between compaction characteristics (optimum moisture content and maximum dry density) and Atterberg limits (liquid limit and plastic limit). Results showed that the natural moisture content of soil samples ranged between 4.97 % and 19.72 %; liquid limit ranged between 27 % and 68 %; plastic limit ranged between 18.92 % and 63.01 %; and plasticity index ranged between 0.94 % and 14.63 %. The optimum moisture content ranged between 6.7 % and 27 %, while the maximum dry density ranged between 1560 kN/m3 and 2260 kN/m3. The results of regression analysis showed that the combination of liquid limit and plastic limit has a strong correlation with optimum moisture content (R2 = 0.870); while the combination (of liquid limit and plastic limit) showed a weak correlation with maximum dry density (R2 = 0.150). The study concluded that liquid limit and plastic limit could be used to estimate the optimum moisture content of the soils, by applying the developed relationship/equation.  


2013 ◽  
Vol 689 ◽  
pp. 342-347 ◽  
Author(s):  
Zhi Hua Yu ◽  
Yue Gui ◽  
Qing Zhang ◽  
Xiang Yun Kong

It is very essential to explore a more efficient and a lower-cost stabilizer based the traditional stabilizer, lime. Through the laboratory test, this article made a comparison on the stabilization effects from the water ratio limit and unconfined compressive strength of the stabilized sludge, which was processed by using two common industrial wastes as stabilizers, fly ash and phosphogypsum, with the lime. The laboratory experiment results indicate that liquid limit and plastic limit of phosphogypsum compound stabilizers have a significant increase compared with the single lime added solidified sludge, but little change in the plasticity index over a curing age of 7 days or 28 days; while that of by adding fly ash has almost no change in liquid limit and plastic limit compared with the single lime added solidified sludge. Meanwhile the solidified sludge by adding the previous two stabilizers have an increase in unconfined compressive strength compared with the single lime added solidified sludge. Comprehensively compared above, the waste phosphogypsum as the extra additive stabilizer of the lime makes the optimal effect.


2020 ◽  
Vol 14 (1) ◽  
pp. 41-50 ◽  
Author(s):  
Hai-Bang Ly ◽  
Binh Thai Pham

Background: Shear strength of soil, the magnitude of shear stress that a soil can maintain, is an important factor in geotechnical engineering. Objective: The main objective of this study is dedicated to the development of a machine learning algorithm, namely Support Vector Machine (SVM) to predict the shear strength of soil based on 6 input variables such as clay content, moisture content, specific gravity, void ratio, liquid limit and plastic limit. Methods: An important number of experimental measurements, including more than 500 samples was gathered from the Long Phu 1 power plant project’s technical reports. The accuracy of the proposed SVM was evaluated using statistical indicators such as the coefficient of correlation (R), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) over a number of 200 simulations taking into account the random sampling effect. Finally, the most accurate SVM model was used to interpret the prediction results due to Partial Dependence Plots (PDP). Results: Validation results showed that SVM model performed well for prediction of soil shear strength (R = 0.9 to 0.95), and the moisture content, liquid limit and plastic limit were found as the three most affecting features to the prediction of soil shear strength. Conclusion: This study might help in quick and accurate prediction of soil shear strength for practical purposes in civil engineering.


2019 ◽  
Vol 10 (3) ◽  
pp. 22-26
Author(s):  
Abdul Jabbar Khan ◽  
Naveed Ahsan ◽  
Muhammad Sanaullah ◽  
Gulraiz Akhter

Ormara is located 240 km west of Karachi which is a coastal and port city (25° 16' 29N, 64° 35' 10E) ofPakistan. Present study evaluates engineering properties of soils of Ormara for future construction plans and possibleexpansions in the area. Fifty bore holes were done in study area at depths of 20m, 40m and some (10 bore holes) were60m deep. The study area was divided into three major zones i.e. Foot hills, on-shore and off-shore. Groundwater wasencountered at depths of 2.75m on onshore and offshore zones and at 3.65m depth in foothill zone. Laboratory testingi.e. moisture content (12 to 38 %), liquid limit (from 26 to 34), plasticity index (10 to 18) of soil samples indicate thatsoils are low plastic to moderate plastic in nature. Soil samples of granular soils indicate angles of internal friction (ø)varying from 260- 36ºin upper sand layers while 260 to 30º in lower silt layers (encountered after the clay layer) andCohesion ranges 0 to 0.04kg/cm2 in all three zones. Further, unconsolidated undrained triaxial compression tests on aclayey soil sample indicated an undrained cohesion value of 28 kPa. Density values ranges from 1.6 to 2.05gm/cm3.Consolidation (Cv = 0.20 to 0.40 cm2/minute, Cc = 0.149 to 0.17) has been calculated for clay layer. Chemical testscarried out on soil samples indicated that soil and water both are reactive aggressively and may cause corrosion to steeland concrete disintegration.


Sign in / Sign up

Export Citation Format

Share Document