scholarly journals Analysis of consumption and ensuring energy resources of the Dnipropetrovsk Region

2020 ◽  
Vol 166 ◽  
pp. 04002
Author(s):  
Myroslav Syvyi ◽  
Natalia Panteleeva ◽  
Liudmyla Burman ◽  
Olga Kalinichenko ◽  
Mykhailo Provozhenko

The issue of energy-saving and energy efficiency is actual at the present-day development of Ukraine’s economy. The imperfective system of energy ensuring as the result of inefficient energy resources utilization is a characteristic feature of the state. The analysis of ensuring energy resources applied to Dnipropetrovsk Region as one of the leading industrial regions of the country is presented in the article. The availability of reserves and production of fuel resources was analyzed in it. Distinctive features of energy resources consumption with the aim of assessment general and partial indexes of energy ensuring and fuel power-intensity of the region’s economic complex are highlighted in the work. The tendencies and perspectives of energy consumption development of the Dnipropetrovsk Region were analyzed herewith.

Author(s):  
Valery Glebovich Larionov ◽  
Marina Gennad'evna Treyman

The article gives the analysis of resource saving and energy efficiency of the enterprises of water supply and waste water services of the State Unitary Enterprise “St. Petersburg Vodokanal”. There has been evaluated the consumption of electrical energy by the enterprise. The main methods of energy resources management (creating a system of rational consumption and saving of energy resources, using energy-efficient materials, equipment and technologies, identifying the potential of energy-saving measures at operating facilities) have been determined. The priority directions for reducing the production energy intensity in the water supply processes have been defined. An algorithm is proposed that includes the processes of collecting, modeling, structuring information, as well as developing an optimal solution for an enterprise. A model for optimizing work in water supply processes is presented, software products are considered that allow to control the processes of energy saving and energy efficiency. The most promising software products for their introducing them into practice of the enterprise have been identified, including General Electric Intelligent Platforms CSense. A plan for the sequential implementation of the software product into operation at the enterprise is presented. The dynamics of electricity consumption at the enterprise, the structure of energy consumption are illustrated. It is noted that the most significant contribution to the amount of energy consumption is made by the technological processes of water intake and supply. It has been substantiated that the most energy-consuming process for the enterprise (Water Supply Branch of the State Unitary Enterprise St. Petersburg Vodokanal) is replacement or maintenance of pumping equipment. The components of energy conservation of the enterprise under study are the partial regulation and automation of processes.


Author(s):  
Petro Pererva ◽  
Tetiana Kobielieva ◽  
Oleksandra Kosenko ◽  
Victoria Matrosova ◽  
Valerii Kobieliev

The article substantiates the necessity and relevance of the introduction of progressive energy efficiency systems at industrial enterprises. It is shown that in Ukraine in 2020 only 43.1% of energy resources are used efficiently, according to the data of the energy efficiency rating. In 2019, this figure was higher - 54%. The analysis of the use of energy resources in industry, services, agriculture and the housing sector in Ukraine, as well as in the countries of the European Union. The issues of organizing energy efficiency benchmarking for industrial enterprises of Ukraine are considered. The main attention is paid to an integrated approach, which consists in creating a regulatory framework and organizing information support during benchmarking. The experience of the EU countries in solving the problem of technical regulation of energy efficiency benchmarking and the possibility of its use in international entrepreneurship is considered. Only the main stages of energy saving benchmarking are considered in detail, which include: selection of a benchmark, comparison and assessment, positioning of the research object and determination of leaders and outsiders, grouping benchmarking partners by energy efficiency level, identification of the gap, identification of the causes of inefficient energy consumption, determination of the scale and nature of the problem. The introduction of an energy efficiency benchmarking system on a regular basis as a control and planning subsystem as part of an energy management system will make it possible to track changes in the energy efficiency indicators of the production system and its structural objects, the level of energy efficiency over time, negative trends and causes of their occurrence, to assess the effectiveness of adaptation of the best principles of efficient energy consumption in own conditions and the effectiveness of the implementation of energy-saving measures, which will contribute to the continuous improvement of the production system and its facilities.


Author(s):  
S. Gushchin ◽  
A. Seminenko ◽  
Chao Shen

The need to provide heat, hot water and electricity are the basic needs of society, and throughout the history of mankind, they form the greatest demand for energy resources. In the modern world, energy consumption by countries all over the world is constantly increasing; it’s creating new problems such as lack of energy resources, their rise in price, depletion of energy sources, environmental threats, and others. In connection with the problem of saving, rational and efficient use of energy resources and huge energy losses in the construction industry, this article considers world experience of application of energy-saving technologies and other measures to improve energy efficiency, analyzes the current situation in the field of energy saving in Russia. Prerequisites to the study of energy efficiency problems are considered, state of energy consumption and energy saving in China, USA, some EU countries and Russia is analyzed, the world experience of application ways of energy efficiency improving at the state level is considered. The problems and historical background that hinder the development of Russia in the field of energy saving are discussed. Specific proposals to improve energy efficiency in Russia have been put forward based on an analysis of international experience.


2020 ◽  
Vol 18 (4) ◽  
pp. 555-560
Author(s):  
Rashid Sharipov ◽  
Olga Kudrevich ◽  
Syrymgali Yerzhanov ◽  
Madina Shavdinova ◽  
Dinara Tyulyubayeva

One of the most important strategic objectives is to create a sustainable model for the development of the Kazakhstan economy, which is closely linked to the solution of energy saving and energy efficiency in the construction industry. The main principles of the energy efficiency strategy include integrated approach (efficient use of energy at all stages of the facility's life cycle for all types of energy resources, with legal support and organizational and technical control by the state) and systematic approach (the study of the process using general rather than partial approach). The article analyzes key problems and barriers that prevent the successful implementation of energy saving and energy efficiency policies. A significant role in the rational use of energy resources belongs to the regulatory framework. It was revealed that currently existing regulatory and technical documents in the country, unlike similar documents in EU countries, have a number of inaccuracies and disadvantages that do not allow for a full accounting of energy consumption. At present, there is practically no effective methodology for determining the energy efficiency of residential buildings and structures in Kazakhstan. In this regard, a methodology for determining the energy efficiency of buildings and structures, harmonized with EU requirements (taking into account energy consumption for heating, ventilation, high-temperature water supply, cooling and lighting) is currently being developed. The energy efficiency improvement of new, renovated and operated buildings will make it possible to reduce greenhouse gas emissions, thus contributing to solving both global environmental problems and energy and environmental security in the Republic of Kazakhstan.


2021 ◽  
Vol 11 (11) ◽  
pp. 4719
Author(s):  
Romulos da S. Machado ◽  
Fabiano dos S. Pires ◽  
Giovanni R. Caldeira ◽  
Felipe T. Giuntini ◽  
Flávia de S. Santos ◽  
...  

Data centers are widely recognized for demanding many energy resources. The greater the computational demand, the greater the use of resources operating together. Consequently, the greater the heat, the greater the need for cooling power, and the greater the energy consumption. In this context, this article aims to report an industrial experience of achieving energy efficiency in a data center through a new layout proposal, reuse of previously existing resources, and air conditioning. We used the primary resource to adopt a cold corridor confinement, the increase of the raised floor’s height, and a better direction of the cold airflow for the aspiration at the servers’ entrance. We reused the three legacy refrigeration machines from the old data center, and no new ones were purchased. In addition to 346 existing devices, 80 new pieces of equipment were added (between servers and network assets) as a load to be cooled. Even with the increase in the amount of equipment, the implementations contributed to energy efficiency compared to the old data center, still reducing approximately 41% of the temperature and, consequently, energy-saving.


2015 ◽  
Vol 8 (1) ◽  
pp. 206-210 ◽  
Author(s):  
Yu Junyang ◽  
Hu Zhigang ◽  
Han Yuanyuan

Current consumption of cloud computing has attracted more and more attention of scholars. The research on Hadoop as a cloud platform and its energy consumption has also received considerable attention from scholars. This paper presents a method to measure the energy consumption of jobs that run on Hadoop, and this method is used to measure the effectiveness of the implementation of periodic tasks on the platform of Hadoop. Combining with the current mainstream of energy estimate formula to conduct further analysis, this paper has reached a conclusion as how to reduce energy consumption of Hadoop by adjusting the split size or using appropriate size of workers (servers). Finally, experiments show the effectiveness of these methods as being energy-saving strategies and verify the feasibility of the methods for the measurement of periodic tasks at the same time.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 344
Author(s):  
Alejandro Humberto García Ruiz ◽  
Salvador Ibarra Martínez ◽  
José Antonio Castán Rocha ◽  
Jesús David Terán Villanueva ◽  
Julio Laria Menchaca ◽  
...  

Electricity is one of the most important resources for the growth and sustainability of the population. This paper assesses the energy consumption and user satisfaction of a simulated air conditioning system controlled with two different optimization algorithms. The algorithms are a genetic algorithm (GA), implemented from the state of the art, and a non-dominated sorting genetic algorithm II (NSGA II) proposed in this paper; these algorithms control an air conditioning system considering user preferences. It is worth noting that we made several modifications to the objective function’s definition to make it more robust. The energy-saving optimization is essential to reduce CO2 emissions and economic costs; on the other hand, it is desirable for the user to feel comfortable, yet it will entail a higher energy consumption. Thus, we integrate user preferences with energy-saving on a single weighted function and a Pareto bi-objective problem to increase user satisfaction and decrease electrical energy consumption. To assess the experimentation, we constructed a simulator by training a backpropagation neural network with real data from a laboratory’s air conditioning system. According to the results, we conclude that NSGA II provides better results than the state of the art (GA) regarding user preferences and energy-saving.


Author(s):  
Ivan M. Gryshchenko ◽  
Mykhailo O. Verhun ◽  
Andrii S. Prokhorovskyi

This article attempts to verify the relevance of building a network of energy knowledge hub centres to tackle the priority objective in enhancing energy efficiency and energy saving management in higher education institutions. It is emphasized that the issues of careful and wise use of fuels and energy resources challenge more government efforts, active use of advanced projects to manage energy saving and energy efficiency through the integrated use of different energy sources. The study argues that to identify the potential for energy saving, setting regulatory indicators of energy consumption, determining the key energy saving measures and target objects in the public sector where energy saving programs are planned to be implemented, there is a need to conduct energy surveys with further developing of energy passports for buildings. In the frameworks of this study, the following research methods were used: abstract and logical analysis – to interpret the essence of energy saving concepts for universities; systemic approach – to identify the specifics of energy saving projects implementation in universities; in-depth analysis and synthesis – to forecast the university development priority area of the "Energy efficiency and energy saving"; system, structural, comparative and statistical analyses – to assess the energy consumption in universities; economic and statistical methods – to evaluate the level and the dynamics of the energy sources use before and after the implementation of project activities; graph-based and analytical methods – to facilitate visual representation and schematic presentation of forecasts for further development of energy efficiency and energy saving systems. The study offers a mechanism to shape a network of energy knowledge hub centres to forecast a priority development area of energy efficiency and energy saving programs in higher education institutions along with providing an overview on the process of energy saving based on energy knowledge hub centres by carrying out the following tasks: project identification, scanning, energy audit, implementation of an action plan, and monitoring. It has been verified that to enhance the energy supply system in the university buildings, the following objectives should be attained: using the energy knowledge hub to forecast the university energy efficiency and energy saving programme, implementing an automated individual heating station with weather regulation and installing new radiator heaters.


2014 ◽  
Vol 587-589 ◽  
pp. 283-286 ◽  
Author(s):  
Mei Zhang

According to the current application situation and domestic energy of our current building energy efficiency design analysis software, in view of the current traditional energy-saving design method can't meet the need of practical problems, put forward the BIM (building information modeling) analysis technology and building energy consumption are combined, anew design method for energy saving building. Application of BIM technology to create virtual building model contains all the information architecture, the virtual building model into the building energy analysis software, identification, automatic conversion and analyzing a large number of construction data information includes in the model, which is convenient to get the building energy consumption analysis.


Sign in / Sign up

Export Citation Format

Share Document