scholarly journals The correlation analysis of TOC, CODCr and fluorescence characteristics in MPR

2020 ◽  
Vol 194 ◽  
pp. 04014
Author(s):  
Xi Tian ◽  
Ying Liu ◽  
Chunling Zhao ◽  
Xiaona Ji ◽  
Zhiming Ren ◽  
...  

Water samples from different biochemical reaction time in one reactor period in Micro-Pressure Inner-Loop Bioreactor (MPR) were measured respectively with adopt Excitation-emission matrix (EEM) fluorescence spectroscopy, Total organic carbon (TOC) and chemical oxygen demand (CODCr),analyzed the correlation among the fluorescence integrates volume, TOC and CODCr.Results showed that with the increase of biochemical treatment time, sewage fluorescence integrates volume declined significantly, known fluorescence integrates volume, CODCr and TOC value better correlation, by fluorescence spectrometry analyzed fluorescence characteristics of sewage to determine the organic wastewater degradation effect, can be simpler and more rapid the judgment of the sewage treatment effect.

2020 ◽  
Vol 997 ◽  
pp. 127-138
Author(s):  
Nazzeri Abdul Rahman ◽  
Nur Afifah Tomiran ◽  
Aiman Hakim Hashim

Peat water is an abundant water resource in Sarawak where some of the coastal areas in Sarawak still utilize peat water for domestic usage. Peat water contains natural organic matters especially humic substances which include humic acids. Humic acids contribute to the brown color of peat water and can cause diseases such as stomach cancer, blackfoot disease and etc. if consumed by human. Electrocoagulation is an alternative to conventional water treatment methods which have the advantages of being environmental friendly, minimal sludge production and no addition of chemical substances. The aims of this study are to fabricate a desktop scale electrocoagulation system with galvanised iron electrodes and to investigate the effects of the operating parameters such as inter-electrode distance, applied current density, number of electrodes, and treatment time on peat water in the system. The performance of batch electrocoagulation system in term of their removal efficiency of several parameters such as total organic carbon (TOC), chemical oxygen demand (COD), color and turbidity are evaluated. Through experimental tests conducted, this system successfully removes 98.44% of COD, 92.02% of TOC, 97.92% of turbidity and 99.91% of color by using galvanized iron as an electrode at current density of 25 A/m2in 30 minutes with 10 galvanized iron electrodes. Despite the fact that there is a small amount of iron ions and zinc ions remained in the treated peat water which are 0.001mg/l and 0.0442mg/l respectively, these concentrations are far below the standard limits imposed by Malaysia Ministry of Health (MOH). Generally, all the parameters studied meet the standard limit imposed by MOH except for total organic carbon. This is particularly due to the improper filtration system adopted in this study. The total operating costs for 252 in 30 minutes treatment time of 10 electrode plates is RM 8.75 per . Overall, the study have successfully designed a batch electrocoagulation system to treat peat water by using galvanized iron for domestic usage.


2010 ◽  
Vol 61 (10) ◽  
pp. 2557-2561 ◽  
Author(s):  
M. K. Vilve ◽  
M. E. T. Sillanpää

This paper presents a summary of degrading organic compounds of nuclear laundry water by ozonation in different conditions of pH, hydrogen peroxide and ultraviolet radiation. The degradation of organic compounds was analysed by chemical oxygen demand (COD), total organic carbon (TOC) and biochemical oxygen demand (BOD). The optimal degradation conditions were at pH 7 with ozone, UV radiation and hydrogen peroxide addition. The transfer of ozone increased significantly, thus resulting in decreased treatment time compared to ozone treatment alone. The reductions of COD, TOC and BOD were 46%, 32% and 70%, respectively.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zarimah Mohd Hanafiah ◽  
Wan Hanna Melini Wan Mohtar ◽  
Hassimi Abu Hasan ◽  
Henriette Stokbro Jensen ◽  
Anita Klaus ◽  
...  

Abstract The fluctuation of domestic wastewater characteristic inhibits the current conventional microbial-based treatment. The bioremediation fungi has received attention and reported to be an effective alternative to treat industrial wastewater. Similar efficient performance is envisaged for domestic wastewater whereby assessed performance of fungi for varying carbon-to-nitrogen ratios in domestic wastewater is crucial. Thus, the performance of pre-grown wild-Serbian Ganoderma lucidum mycelial pellets (GLMPs) was evaluated on four different synthetic domestic wastewaters under different conditions of initial pH (pH 4, 5, and 7) and chemical oxygen demand (COD) to nitrogen (COD/N) ratio of 3.6:1, 7.1:1, 14.2:1, and 17.8:1 (C3.6N1, C7.1N1, C14.2N1, and C17.8N1). The COD/N ratios with a constant concentration of ammonia–nitrogen (NH3–N) were chosen on the basis of the urban domestic wastewater characteristics sampled at the inlet basin of a sewage treatment plant (STP). The parameters of pH, COD, and NH3–N were measured periodically during the experiment. The wild-Serbian GLMPs efficiently removed the pollutants from the synthetic sewage. The COD/N ratio of C17.8N1 wastewater had the best COD and NH3–N removal, as compared to the lower COD/N ratio, and the shortest treatment time was obtained in an acidic environment at pH 4. The highest percentage for COD and NH3–N removal achieved was 96.0% and 93.2%, respectively. The results proved that the mycelium of GLMP has high potential in treating domestic wastewater, particularly at high organic content as a naturally sustainable bioremediation system.


2019 ◽  
Vol 15 (1) ◽  
pp. 97-108 ◽  
Author(s):  
Massara Mustafa Ha Hammad ◽  
Khalid W. Hameed ◽  
Hussein A. Sabti

In the present work, the pollutants of the municipal wastewater are reduced using Chlorella vulgaris microalgae. The pollutants that were treated are: Total organic carbon (TOC), Chemical oxygen demand (COD), Nitrate (NO3), and Phosphate (PO4). Firstly, the treatment was achieved at atmospheric conditions (Temperature = 25oC), pH 7 with time (1 – 48 h). To study the effect of other microorganisms on the reduction of pollutants, sterilized wastewater and unsterilized wastewater were used for two types of packing (cylindrical plastic and cubic polystyrene) as well as algae's broth (without packing), where the microalgae are grown on the packing then transported to the wastewater for treatment. The results showed that the other microorganism in unsterilized wastewater can slightly contribute in the treatment. Packing of cylindrical plastic is more effective than the cubic polystyrene, and microalgae's broth gives better results than the two types of packing. The treatment in the first hours was performed quickly while in the last hours, it was very slow. Then, the following parameters in the range of (temperature: 20 – 35o) pH (5 – 8), volume ratio of wastewater to microalgae's broth (1 – 2.5) were studied for sterilized wastewater and constant treatment time equal to 48 h. The results showed that the maximum reduction of pollutants are: TOC = 92.3%, NO3 = 65.2%, PO4 = 93.2% at T = 35oC, pH 8, and (wastewater/algae broth) ratio = 1, and COD = 85.6% at T = 30oC, pH 7, and (wastewater/ algae broth) ratio = 1. The temperature and pH have little effect on the reduction of pollutants compared with the wastewater/algae broth ratio. The adsorption isotherm for pollutant was also studied for three types of isotherm; linear, Freundlich, and Langmuir. The results showed that the treated pollutants are the Langmiur adsorption isotherm.


2010 ◽  
Vol 62 (1) ◽  
pp. 209-216 ◽  
Author(s):  
Idil Arslan-Alaton ◽  
B. Hande Gursoy ◽  
Abdurahman Akyol ◽  
Mehmet Kobya ◽  
Mahmut Bayramoglu

In the present study, Fenton's oxidation of a chromium complex disazo dye (Acid Blue 193) synthesis wastewater was evaluated, modeled and optimized by employing Central Composite Design. Within this context, the individual and interactive effects of critical process parameters such as Fe2 + , H2O2 concentrations, initial chemical oxygen demand (COD) and reaction time was assessed. The process response (output) variables were chosen as percent color, COD and total organic carbon (TOC) removal efficiencies. Optimum working conditions in terms of color and organic carbon removals were established to be Fe2 +  = 3 mM; H2O2 = 25 mM; reaction time = 10 min at pH 3 and an initial COD content of 245 mg/L. Under these conditions, 96% color, 82% COD and 51% TOC removals were obtained. The established polynomial regression models describing color, COD and TOC removals satisfactorily fitted the experimental data and could be used to predict Fenton's treatment results at statistically significant rates. Optimized treatment results were compared with those obtained via electrocoagulation treatment under optimized conditions (applied current = 50 A/m2; reaction time = 15 min; initial pH = 7 for an initial COD content of 245 mg/L). The relative inhibition of heterotrophic oxygen uptake rate was measured to examine the inhibitory effect of azo dye synthesis effluent before and after Fenton's oxidation and electrocoagulation with respect to synthetic domestic wastewater. Untreated azo dye production wastewater exhibited a slightly inhibitory effect that was appreciably reduced but not entirely removed after Fenton's oxidation, whereas no inhibition of mixed bioculture was observed for azo dye synthesis effluent subjected to electrocoagulation treatment.


Author(s):  
Ibtissem Bousnoubra ◽  
Soumia Fassi ◽  
Kamel E. Djebbar

Abstract The aim of this study is to verify the ability of some photochemical processes in the absence of light (Fenton) and in its presence (photolysis/UV, photo-Fenton/UV and photo-Fenton/Solar) to obtain total decolorization and mineralization of an diazo dye in aqueous solution: the Evans Blue (abbreviated as EB). Batch experiments were carried out to evaluate, on the first stage, the influence of different processes on EB decolorization and mineralization. During the second stage the optimal operational conditions like: H2O2 dosage, EB concentration and source of light were investigated. The reaction efficiencies have been compared for the same system in the dark or under the assistance of an artificial or solar light source. The obtained results showed that color removal followed the increasing order: photolysis/UV (18.2%) < Fe(II)/H2O2 (64.12%) < Fe(II)/H2O2/UV365 nm (83.4%) < Fe(II)/H2O2/solar light (86.3%) < Fe(II)/H2O2/UV254 nm (99.9%) with a reaction time of 60 min This improvement could be related to a better production of radicals OH•. In another hand, The efficiency of substrate mineralization in each process has been comparatively discussed by total organic carbon (TOC) and total chemical oxygen demand content of EB solutions.


Author(s):  
Michiel Van Tendeloo ◽  
Bert Bundervoet ◽  
Nathalie Carlier ◽  
Wannes Van Beeck ◽  
Hans Mollen ◽  
...  

Energy-autonomous sewage treatment can be achieved if nitrogen (N) removal does not rely on organic carbon (~chemical oxygen demand, COD), so that a maximum of the COD can be redirected...


2000 ◽  
Vol 42 (1-2) ◽  
pp. 13-18 ◽  
Author(s):  
I. Arslan ◽  
I. Akmehmet Balcioglu ◽  
T. Tuhkanen

Treatment of synthetic dyehouse effluent containing six reactive dyestuffs and their assisting chemicals by O3/Fe(II), O3/Mn(II), and O3/H2O2 advanced oxidation processes was investigated. All oxidation processes were capable of completely decolourizing the wastewater within 30 min. Decolourization proceeded fastest by the O3/Mn(II) process, whereas the O3/H2O2 combination was more efficient in the removal of DOC (Dissolved Organic carbon) and UV254nm which were 11 and 53%, respectively, for one hour treatment time. Application of Fe(II)-catalyzed ozonation provided an effective means of removing colour and COD (Chemical Oxygen Demand) by a five- and nine-fold enhancement, respectively, compared with conventional coagulation applied at the same coagulant doses. Formation of toxic oxidation products was not observed during the course of treatment with all investigated advanced oxidation processes.


2016 ◽  
Vol 74 (2) ◽  
pp. 375-384 ◽  
Author(s):  
M. Han ◽  
H. De Clippeleir ◽  
A. Al-Omari ◽  
B. Wett ◽  
S. E. Vlaeminck ◽  
...  

While deammonification of high-strength wastewater in the sludge line of sewage treatment plants has become well established, the potential cost savings spur the development of this technology for mainstream applications. This study aimed at identifying the effect of aeration and organic carbon on the deammonification process. Two 10 L sequencing bath reactors with different aeration frequencies were operated at 25°C. Real wastewater effluents from chemically enhanced primary treatment and high-rate activated sludge process were fed into the reactors with biodegradable chemical oxygen demand/nitrogen (bCOD/N) of 2.0 and 0.6, respectively. It was found that shorter aerobic solids retention time (SRT) and higher aeration frequency gave more advantages for aerobic ammonium-oxidizing bacteria (AerAOB) than nitrite oxidizing bacteria (NOB) in the system. From the kinetics study, it is shown that the affinity for oxygen is higher for NOB than for AerAOB, and higher dissolved oxygen set-point could decrease the affinity of both AerAOB and NOB communities. After 514 days of operation, it was concluded that lower organic carbon levels enhanced the activity of anoxic ammonium-oxidizing bacteria (AnAOB) over denitrifiers. As a result, the contribution of AnAOB to nitrogen removal increased from 40 to 70%. Overall, a reasonably good total removal efficiency of 66% was reached under a low bCOD/N ratio of 2.0 after adaptation.


2016 ◽  
Vol 74 (6) ◽  
pp. 1312-1325 ◽  
Author(s):  
Dheeaa al deen Atallah Aljuboury ◽  
Puganeshwary Palaniandy ◽  
Hamidi Bin Abdul Aziz ◽  
Shaik Feroz ◽  
Salem S. Abu Amr

The aim of this study is to investigate the performance of combined solar photo-catalyst of titanium oxide/zinc oxide (TiO2/ZnO) with aeration processes to treat petroleum wastewater. Central composite design with response surface methodology was used to evaluate the relationships between operating variables for TiO2 dosage, ZnO dosage, air flow, pH, and reaction time to identify the optimum operating conditions. Quadratic models for chemical oxygen demand (COD) and total organic carbon (TOC) removals prove to be significant with low probabilities (&lt;0.0001). The obtained optimum conditions included a reaction time of 170 min, TiO2 dosage (0.5 g/L), ZnO dosage (0.54 g/L), air flow (4.3 L/min), and pH 6.8 COD and TOC removal rates of 99% and 74%, respectively. The TOC and COD removal rates correspond well with the predicted models. The maximum removal rate for TOC and COD was 99.3% and 76%, respectively at optimum operational conditions of TiO2 dosage (0.5 g/L), ZnO dosage (0.54 g/L), air flow (4.3 L/min), reaction time (170 min) and pH (6.8). The new treatment process achieved higher degradation efficiencies for TOC and COD and reduced the treatment time comparing with other related processes.


Sign in / Sign up

Export Citation Format

Share Document