scholarly journals Study on enhanced bioremediation effect of oil-bearing dredging sediment

2021 ◽  
Vol 252 ◽  
pp. 02031
Author(s):  
Lei Chao ◽  
Xiaoyun Mo ◽  
Jia Meng ◽  
Yafeng Li

To solve the problem of difficult treatment of oil-bearing dredging sediment, the effects of three methods of microbial remediation, phytoremediation and combined bioremediation on the treatment of oily river dredging sediments were compared and studied, and the influence factors of microbial remediation were explored through static bacteria-fling tests. The results showed that the combined remediation method was better than the single biological method in treating bottom mud. The oil content of the treated sediment was 1.21g/kg, and the removal rate was 95.31%; the organic matter of the treated sediment was 72.30g/kg, and the degradation rate was 37.33. %, which can meet the requirements in the “Control Standards of Pollutants in Sludge for Agricultural Use (GB4284–2018)” and can be used for agricultural purposes.

2013 ◽  
Vol 859 ◽  
pp. 357-360 ◽  
Author(s):  
Xiao Dong Wang ◽  
Yang Lv ◽  
Meng Meng Li ◽  
Hong Ye Liu

This study investigates the degradation of Nonylphenol. The degradation affecting factors including solution ozone dosage, initial concentration, pH, temperature and ultraviolet. The results indicated that when the ozone contents changes, the Nonylphenols degradation rate changes as well. The higher ozone concentration contribute to the faster degradation; With the increase of initial concentration of Nonylphenol, the removal rate of it decrease on the contrary, while with the initial concentration increases, the quality of unit ozone degradation of Nonylphenol is ascenting and then tend to a constant; The remove rate of Nonylphenol is improving when the pH value vary from 4.86~10.34. The effect of Nonylphenols ozonation in higher temperatures is better than it is in lower temperature; Ultraviolet radiation is also favorable for the removal of Nonylphenol as it can shorten the reaction time as well as reduce the amount of ozone.


2012 ◽  
Vol 433-440 ◽  
pp. 411-415
Author(s):  
Wen Jie Zhang ◽  
Ke Xin Li ◽  
Jia Wei Bai

Porous TiO2 film was prepared by a sol-gel method using PEG1000 as pore forming template. The porous film and normal film were used as electrodes in a photoelectrocatalytic reactor. The functions of applied potential and concentration of NaH2PO4 to the photoelectrocatalytic degradation process of methyl orange were investigated. The results show that methyl orange cannot be degraded solely by the applied potential. Under the applied potential of 2 V, 49.9% of the initial dye can be removed on the normal TiO2 film electrode, which is much better than the 31.1% removal rate on the porous TiO2 film electrode. The normal TiO2 film electrode has better performance than the porous TiO2 film in the whole NaH2PO4 concentration range. After 80 min of reaction, degradation rate is 93.7% on the normal TiO2 film electrode. After 100 min of reaction, degradation rate is 89.7% on the porous TiO2 film electrode.


2013 ◽  
Vol 864-867 ◽  
pp. 155-160 ◽  
Author(s):  
Xiao Dong Wang ◽  
Yang Lv ◽  
Hong Ye Liu ◽  
Meng Meng Li

This study investigates the degradation of bisphenol A (BPA). The degradation affecting factors including solution ozone dosage, initial concentration, pH, temperature and ultraviolet. The results indicated that when the ozone contents changes, the BPAs degradation rate changes as well. The higher ozone concentration contribute to the faster degradation; With the increase of initial concentration of BPA, the removal rate of it decrease on the contrary, while with the initial concentration increases, the quality of unit ozone degradation of BPA is ascenting and then tend to a constant; The remove rate of BPA is improving when the pH value vary from 4.86~10.34. The effect of BPAs ozonation in higher temperatures is better than it is in lower temperature; Ultraviolet radiation is also favorable for the removal of BPA as it can shorten the reaction time as well as reduce the amount of ozone.


2000 ◽  
Vol 42 (5-6) ◽  
pp. 329-336 ◽  
Author(s):  
M. Quezada ◽  
I. Linares ◽  
G. Buitrón

The degradation of azo dyes in an aerobic biofilter operated in an SBR system was studied. The azo dyes studied were Acid Red 151 and a textile effluent containing basic dyes (Basic Blue 41, Basic Red 46 and 16 and Basic Yellow 28 and 19). In the case of Acid Red 151 a maximal substrate degradation rate of 288 mg AR 151/lliquid·d was obtained and degradation efficiencies were between 60 and 99%. Mineralization studies showed that 73% (as carbon) of the initial azo dye was transformed to CO2 by the consortia. The textile effluent was efficiently biodegraded by the reactor. A maximal removal rate of 2.3 kg COD/lliquid·d was obtained with removal efficiencies (as COD) varying from 76 to 97%. In all the cycles the system presented 80% of colour removal.


Author(s):  
Xiang Ma ◽  
Xuemei Li ◽  
Yuanfeng Zhou ◽  
Caiming Zhang

AbstractSmoothing images, especially with rich texture, is an important problem in computer vision. Obtaining an ideal result is difficult due to complexity, irregularity, and anisotropicity of the texture. Besides, some properties are shared by the texture and the structure in an image. It is a hard compromise to retain structure and simultaneously remove texture. To create an ideal algorithm for image smoothing, we face three problems. For images with rich textures, the smoothing effect should be enhanced. We should overcome inconsistency of smoothing results in different parts of the image. It is necessary to create a method to evaluate the smoothing effect. We apply texture pre-removal based on global sparse decomposition with a variable smoothing parameter to solve the first two problems. A parametric surface constructed by an improved Bessel method is used to determine the smoothing parameter. Three evaluation measures: edge integrity rate, texture removal rate, and gradient value distribution are proposed to cope with the third problem. We use the alternating direction method of multipliers to complete the whole algorithm and obtain the results. Experiments show that our algorithm is better than existing algorithms both visually and quantitatively. We also demonstrate our method’s ability in other applications such as clip-art compression artifact removal and content-aware image manipulation.


2014 ◽  
Vol 18 (1) ◽  
pp. 80-88 ◽  
Author(s):  
K. Haggag ◽  
N.S. Elshemy ◽  
W. Niazy

Modified alkyd resins with different amounts of vegetable oil contents (sunflower oil) and different catalysts are synthesized with the incorporation of post-consumer polyethylene terephthalate (PET) as a partial substitute for phthalic anhydride. It is found that the properties of the products obtained are directly related to the oil content. The polymerization reactions are followed by the acid value. The modified binder contains 50% oil and 10% PET in the presence of LiOH as the catalyst by using microwave irradiation. The AV value is attained in a short amount of time; it is found that the glass Transition Temperature (Tg) of the modified binder is -1.7 °C. The stiffness and roughness of the printed fabrics by using the modified binder are better than those of the commercial binder for both cotton and cotton/polyester fabrics. Moreover, it is clear that the overall fastness properties of the fabrics printed by using the modified binder in the formulation of printing pastes are higher or comparable to those that use commercial binders.


2015 ◽  
Vol 1092-1093 ◽  
pp. 972-975
Author(s):  
Jing Yang

According to the problems exist in cyclic utilization of washing wastewater, the coagulation tests utilizing ferric trichloride (FeCl3), alums, poly aluminium chloride (PAC) and polyacrylamide (PAM) are studied, respectively. Experimental results show that PAC was much better than the other coagulants in the removal of LAS and chroma as a single coagulant. Cast 2.5mL PAC(10%) into quantitative washing wastewater, the removal rate of LAS and chroma reach 82.5% and 87.8%, respectively. When mix the every two kinds of coagulants, maintaining the same total amount of coagulant to 2.5mL, cast1.0mL PAC(10%) and 1.5mL alum (10%) into washing wastewater ,the removal rate of LAS and chroma reach 84.1% and 90.0%, respectively.


2013 ◽  
Vol 634-638 ◽  
pp. 526-530
Author(s):  
Chun Xiang Geng ◽  
Qian Qian Chai ◽  
Wei Yao ◽  
Chen Long Wang

Selective Catalytic Reduction (SCR) processes have been one of the most widely used denitration methods at present and the property of low tempreture catalyst becomes a hot research. The Mn-Ce/TiO2 catalyst was prepared by incipient impregnation method. The influence of load capacity, reaction temperature, O2 content, etc. on denitration were studied by a fixed bed catalyst reactor with ammonia gas. Results showed that catalyst with load capacity 18% performed high NO removal rate of 90% at conditions of reaction temperature 160°C, low space velocity, NH3/NO molar ratio 1: 1, O2 concentration 6%.


2013 ◽  
Vol 859 ◽  
pp. 361-364 ◽  
Author(s):  
Jing Wang ◽  
Du Shu Huang ◽  
Wei Liu ◽  
Qing Shan Pan ◽  
Yong Min

Degradation properties of phenol using nano-TiO2 as photocatalyst in aqueous solution were investigated. The effect of annealing temperature and ionic modification on the degradation was studied. The results showed that, 500 °C annealed TiO2 was better than 700 °C annealed. Photocatalyst nano-TiO2 material doped with Fe3+ was prepared quickly by sol-gel process and was used as photocatalyst to degrade phenol solution of 100mg/L under UV irradiation for 3 hours. UV spectrophotometer testing was made and found that two peaks at 210 nm and 270 nm were significantly become low, indicating that the phenol has been degraded. The phenol degradation rate was 94.18%.


2010 ◽  
Vol 37 (11) ◽  
pp. 1492-1504
Author(s):  
Mamata Sharma ◽  
Nihar Biswas

Sulfate (1500 mg/L) reduction and glucose (1870 mg/L) degradation was examined in the presence of five varying linoleic acid (LA) levels (100–1000 mg/L) at 37 ± 2 °C and pH 7.0–7.2. The sulfate reduction and methane formation data suggest that LA selectively inhibited methane producing bacteria (MPB). The quantity of sulfate removed increased with increasing LA dosage. Approximately 1375 mg/L (92%) sulfate was removed in cultures fed with high concentrations of LA (1000 mg/L), which was 68% more than that removed in glucose and sulfate controls. The quantity of sulfate removed in cultures fed with 100, 300, 500 and 700 mg/L LA were 62%, 66%, 77%, and 84%, respectively. Initial sulfate degradation rates increased with increasing LA levels in the cultures. High LA levels (1000 mg/L) attributed to approximately a sevenfold increase in the initial sulfate degradation rates compared to cultures containing sulfate plus glucose. The highest initial sulfate removal rate (0.19 µg/(mgVSS min)) was observed in cultures receiving 1000 mg/L LA. Initial glucose degradation rates decreased with increasing LA concentrations. The rates for the cultures receiving 1000 mg/L LA were 2.53 µg/(mgVSS min) while the degradation rate for cultures containing 100 mg/L LA was 5.40 µg/(mgVSS min). Methane formation decreased when sulfate and LA were added. Methane formation was lowest in cultures receiving elevated LA concentrations. The percent electron flow fluxes increased towards sulfidogenesis and decreased towards methanogenesis with increasing LA levels. Less than 0.6% electron flow was diverted to methanogenesis in cultures containing high levels of LA (≥700 mg/L) while ≤ 45% was diverted to sulfidogenesis. Acetate and propionate were the major volatile fatty acids (VFAs) detected during glucose degradation. The amount of sulfate reduced in the cultures receiving only LA or sulfate and no other carbon source was comparable (approximately 10%), which suggests that LA did not contribute to electrons during the course of experiment for sulfate reduction.


Sign in / Sign up

Export Citation Format

Share Document