scholarly journals Improving the energy efficiency of the pipeline system by ensuring its linear flow characteristic

2021 ◽  
Vol 279 ◽  
pp. 01019
Author(s):  
Denis Dymochkin ◽  
Mariya Kilina ◽  
Vyacheslav Grishenko ◽  
Alexandr Kharchenko

Recently, SMART positioners have been widely used to control the on-off and control valves. These devices allow you to set an arbitrary user dependence of the valve travel on the control signal. This makes it possible to provide a linear throughput for the entire piping system. This allows the use of smaller type control valves while maintaining the control range. Accordingly, the energy consumption for controlling the shutoff element is reduced; the value of the reinforcement energy efficiency indicator is improved. In that work analytically calculates a user dependency that takes into account the value of pipeline throughput and allows to obtain a linear throughput of the pipeline system in the entire range of control signal change.

Author(s):  
Marat R. Lukmanov ◽  
◽  
Sergey L. Semin ◽  
Pavel V. Fedorov ◽  
◽  
...  

The challenges of increasing the energy efficiency of the economy as a whole and of certain production sectors in particular are a priority both in our country and abroad. As part of the energy policy of the Russian Federation to reduce the specific energy intensity of enterprises in the oil transportation system, Transneft PJSC developed and implements the energy saving and energy efficiency improvement Program. The application of energy-saving technologies allowed the company to significantly reduce operating costs and emissions of harmful substances. At the same time, further reduction of energy costs is complicated for objective reasons. The objective of this article is to present additional methods to improve the energy efficiency of oil transportation by the example of the organizational structure of Transneft. Possibilities to reduce energy costs in the organization of the operating services, planning and execution of work to eliminate defects and preparatory work for the scheduled shutdown of the pipeline, the use of pumping equipment, including pumps with variable speed drive, the use of various pipelines layouts, changing the volume of oil entering the pipeline system and increase its viscosity.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2416
Author(s):  
Marina Dorokhova ◽  
Fernando Ribeiro ◽  
António Barbosa ◽  
João Viana ◽  
Filipe Soares ◽  
...  

The energy efficiency requirements of most energy-consuming sectors have increased recently in response to climate change. For buildings, this means targeting both facility managers and building users with the aim of identifying potential energy savings and encouraging more energy-responsible behaviors. The Information and Communication Technology (ICT) platform developed in Horizon 2020 FEEdBACk project intends to fulfill these goals by enabling the optimization of energy consumption, generation, and storage and control of flexible devices without compromising comfort levels and indoor air quality parameters. This work aims to demonstrate the real-world implementation and functionality of the ICT platform composed of Load Disaggregation, Net Load Forecast, Occupancy Forecast, Automation Manager, and Behavior Predictor applications. Particularly, the results obtained by individual applications during the test phase are presented alongside the specific metrics used to evaluate their performance.


2015 ◽  
Vol 747 ◽  
pp. 329-332
Author(s):  
Elham Maghsoudi Nia ◽  
Titi Hajihasani ◽  
Mohd Yazid Mohd Yunos ◽  
Nordin Abdul Rahman

Daylighting strategies and control of it, plays a significant role in energy efficiency and provision of visual comforts in buildings. This study conducted a review of literature and observation in a hot and dry region of Iran in order to investigate daylighting strategies and control of it by shading devices in the vernacular residential buildings. The results show thatdaylight in vernacular rooms was provided through door, window, Rozan, Moshabak, and Goljam. These components were equipped with thevertical and horizontalshading devices such as Orsi, Sarsayeh, Tabeshband and Kharakpoushto control the sunlight. The vernacular lighting strategy was in response to the energy efficiency and provided visual comfort.The vernacular concepts and schemes still can be adopted and reused by architects and developers. The study recommends appropriate daylight schemes and shading devices in design phase to achieve energy efficiency in new residential buildings.


Author(s):  
Kai Wang ◽  
Xinping Yan ◽  
Yupeng Yuan

Nowadays, with the higher voice of ship energy saving and emission reduction, the research on energy efficiency management is particularly necessary. Energy efficiency management and control of ships is an effective way to improve the ship energy efficiency. In this paper, according to the new clean propulsion system configurations of 5000 tons of bulk carrier, the energy efficiency management control strategy of the clean propulsion system is designed based on the model of advanced brushless doubly-fed shaft generator, propulsion system using LNG/diesel dual fuel engine and energy consumption of the main engine for reducing energy consumption. The simulation model of the entire propulsion system and the designed control strategy were designed. The influence of the engine speed on the ship energy efficiency was analyzed, and the feasibility of the energy efficiency management control strategies was verified by simulation using Matlab/Simulink. The results show that the designed strategies can ensure the power requirement of the whole ship under different conditions and improve the ship energy efficiency and reduce CO2 emissions.


Author(s):  
Ігор Бережний ◽  
◽  
Адріан Наконечний ◽  

Based on the research and comparative analysis of existing systems, an algorithm for remote monitoring and control of the technological process using IoT technologies is proposed and developed. We consider a system with flexible algorithms, which combines different data protocols using Wi-Fi technology, which allows you to use this type of system in any industry safely with high speed, energy efficiency and without the cost of communication lines.


Author(s):  
Sirasani Srinivasa Rao ◽  
K. Butchi Raju ◽  
Sunanda Nalajala ◽  
Ramesh Vatambeti

Wireless sensor networks (WSNs) have as of late been created as a stage for various significant observation and control applications. WSNs are continuously utilized in different applications, for example, therapeutic, military, and mechanical segments. Since the WSN is helpless against assaults, refined security administrations are required for verifying the information correspondence between hubs. Because of the asset limitations, the symmetric key foundation is considered as the ideal worldview for verifying the key trade in WSN. The sensor hubs in the WSN course gathered data to the base station. Despite the fact that the specially appointed system is adaptable with the variable foundation, they are exposed to different security dangers. Grouping is a successful way to deal with vitality productivity in the system. In bunching, information accumulation is utilized to diminish the measure of information that streams in the system.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2489 ◽  
Author(s):  
Gonçalo Pina Cipriano ◽  
Lucian Blaga ◽  
Jorge dos Santos ◽  
Pedro Vilaça ◽  
Sergio Amancio-Filho

The present work investigates the correlation between energy efficiency and global mechanical performance of hybrid aluminum alloy AA2024 (polyetherimide joints), produced by force-controlled friction riveting. The combinations of parameters followed a central composite design of experiments. Joint formation was correlated with mechanical performance via a volumetric ratio (0.28–0.66 a.u.), with a proposed improvement yielding higher accuracy. Global mechanical performance and ultimate tensile force varied considerably across the range of parameters (1096–9668 N). An energy efficiency threshold was established at 90 J, until which, energy input displayed good linear correlations with volumetric ratio and mechanical performance (R-sq of 0.87 and 0.86, respectively). Additional energy did not significantly contribute toward increasing mechanical performance. Friction parameters (i.e., force and time) displayed the most significant contributions to mechanical performance (32.0% and 21.4%, respectively), given their effects on heat development. For the investigated ranges, forging parameters did not have a significant contribution. A correlation between friction parameters was established to maximize mechanical response while minimizing energy usage. The knowledge from Parts I and II of this investigation allows the production of friction riveted connections in an energy efficient manner and control optimization approach, introduced for the first time in friction riveting.


Sign in / Sign up

Export Citation Format

Share Document