scholarly journals Impact of cover change of land use on flood vulnerability in Jiangsu province

2021 ◽  
Vol 308 ◽  
pp. 01004
Author(s):  
Shuangchen Du ◽  
Zichuan Zhang

In the context of global warming and rising sea levels, as urbanization continues to increase, the risk situation of urban systems facing floods has become more severe. Therefore, we constructed a vulnerability assessment model for urban flood disasters in Jiangsu Province, focusing on using GIS technology to classify the land use of each city in Jiangsu Province for supervised learning. We also established a flood disaster vulnerability model to evaluate the Vulnerability of 13 cities in Jiangsu Province. Evaluation and analysis of the changes in land use vulnerability use flood disasters in Jiangsu Province from 2000 to 2020. The results show that from 2000 to 2020, the Vulnerability to flooding disasters is on the rise as a whole. Yancheng has the lowest average Vulnerability to flooding disasters due to the low population density and high greening rate in the built-up area. On the other hand, Nantong City has the most heightened average flood vulnerability due to excessive population density. The low greening rate in built-up areas has led to a worsening of flood vulnerability. Suggestions have been made to reduce the Vulnerability of urban floods in Jiangsu Province, such as vigorously developing the local economy, reasonably adjusting the rate of urbanization, and building drainage infrastructure.

Author(s):  
Yangfan Zhou ◽  
Lijie Pu ◽  
Ming Zhu

The unreasonable land use in rapid urbanization areas induced by large-scale urban construction activities have caused massive ecological issues. In this study, landscape vulnerability index (LVI) and landscape human interference index (LHAI) were originally addressed and calculated using multi-temporal land-use data from 2000 to 2015. Then, the spatial-temporal relationship assessment model of landscape fragility caused by human activities were constructed for each county of Jiangsu Province, China, so as to analyze the spatial distribution of landscape vulnerability and determine the impacts of artificial disturbance on landscape vulnerability. The results showed: (1) The number of counties with middle and high landscape vulnerability increased from 20 in 2000 to 27 in 2015 with a peak value (33) in 2010. (2) Counties with high-intensity human activities showed an upward trend. (3) Land use generally has a significant and diverse impact on landscape vulnerability. At the county level, the LVI was positively correlated with the LHAI before 2010 and was followed by a negative correlation of them. As concluded from this study, a total of four sub-regions (continuous benefit zones, variable benefit zones, continuous harmful zones, and variable harmful zones) have been identified for sustainable landscape management in the future. (4) The LVI suggests that the landscape vulnerability in Jiangsu did not continue to deteriorate in the study period. Further, accelerated land exploitation has produced a positive impact on regional economic development and ecological protection. This study provided an effective method set for analyzing the environmental impacts caused by human activities and promoting future ecosystem management in coastal areas.


2015 ◽  
Vol 12 (6) ◽  
pp. 6151-6177 ◽  
Author(s):  
M. Boudou ◽  
B. Danière ◽  
M. Lang

Abstract. This paper presents a diachronic appraisal of flood vulnerability of two French cities, respectively Besançon and Moissac, which have been largely impacted by two ancient floods in January 1910 and March 1930. Both flood events figured among the most significant events recorded in France during the XXth century. An analysis of historical sources allows the mapping of land use and occupation within the flood extent of the two historical floods, both in past and present contexts. It gives an insight of the complexity of flood risk evolution, at a local scale.


2020 ◽  
Vol 12 (18) ◽  
pp. 7668
Author(s):  
Quntao Yang ◽  
Shuliang Zhang ◽  
Qiang Dai ◽  
Rui Yao

Vulnerability assessment is an essential tool in mitigating the impact of urban flooding. To date, most flood vulnerability research has focused on one type of flood, such as a pluvial or fluvial flood. However, cities can suffer from urban flooding for several reasons, such as precipitation and river levee overtopping. Therefore, a vulnerability assessment considering different types of floods (pluvial floods, fluvial floods, and compound flooding induced by both rainfall and river overtopping) was conducted in this study. First, a coupled urban flood model, considering both overland and sewer network flow, was developed using the storm water management model (SWMM) and LISFLOOD-FP model to simulate the different types of flood and applied to Lishui, China. Then, the results of the flood modeling were combined with a vulnerability curve to obtain the potential impact of flooding on different land-use classes. The results indicated that different types of floods could have different influence areas and result in various degrees of flood vulnerability for different land-use classes. The results also suggest that urban flood vulnerability can be underestimated due to a lack of consideration of the full flood-induced factors.


2016 ◽  
Vol 20 (1) ◽  
pp. 161-173 ◽  
Author(s):  
M. Boudou ◽  
B. Danière ◽  
M. Lang

Abstract. This paper presents an appraisal of the temporal evolution of flood vulnerability of two French cities, Besançon and Moissac, which were largely impacted by floods in January 1910 and March 1930, respectively. Both flood events figure among the most significant events recorded in France during the 20th century, in terms of certain parameters such as the intensity and severity of the flood and spatial extension of the damage. An analysis of historical sources allows the mapping of land use and occupation within the areas affected by the two floods, both in past and present contexts, providing an insight of the complexity of flood risk evolution at a local scale.


2021 ◽  
Vol 926 (1) ◽  
pp. 012076
Author(s):  
Guskarnali ◽  
Irvani ◽  
E.P.S.B. Taman Tono

Abstract Pangkalpinang city is one part of Bangka Belitung Archipelago Province which has an area of 118.41 km2 with seven districts and consist of forty-two villages. Based on its location on the eastern part of bangka island make pangkalpinang closer to the coast and watersheds so that it can be said it have a relatively low average land elevation (topography) with a height of 20-50 meters above the sea with a slope of 0-25 %. The research was carried out quantitatively and qualitatively with the parameters of determining the administrative boundaries of each district, the selection of applicable rules regarding the applicable land use zoning or spatial planning (RT/RW), topography, surrounding watersheds, and population density of settlements in Pangkalpinang City. These parameters are then carried out using overlay, scoring and layout techniques to see the distribution of the flood vulnerability level pattern. The results showed that flood vulnerability (very vulnerable) with low topography (0-10 meters above sea level) was in the northwest area of Bukit Intan District and Taman Sari District. Flood vulnerability (vulnerable to less vulnerable) with moderate topographic values (10-19 meters above sea level) is in Gerunggang and Gabek Districts, while vulnerability is not vulnerable with high average topographic values (above 20 meters above sea level). in the northern part in the Districts of Gerunggang, Gabek, and Pangkalbalam. In the northwest part of Pangkalpinang City, if there is an increase in tides or high rainfall intensity, the area will be inundated (flooded).


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 920 ◽  
Author(s):  
Kiyong Park ◽  
Man-Hyung Lee

As a city develops and expands, it is likely confronted with a variety of environmental problems. Although the impact of climate change on people has continuously increased in the past, great numbers of natural disasters in urban areas have become varied in terms of form. Among these urban disasters, urban flooding is the most frequent type, and this study focuses on urban flooding. In cities, the population and major facilities are concentrated, and to examine flooding issues in these urban areas, different levels of flooding risk are classified on 100 m × 100 m geographic grids to maximize the spatial efficiency during the flooding events and to minimize the following flooding damage. In this analysis, vulnerability and exposure tests are adopted to analyze urban flooding risks. The first method is based on land-use planning, and the building-to-land ratio. Using fuzzy approaches, the tests focus on risks. However, the latter method using the HEC-Ras model examines factors such as topology and precipitation volume. By mapping the classification of land-use and flooding, the risk of urban flooding is evaluated by grade-scales: green, yellow, orange, and red zones. There are two key findings and theoretical contributions of this study. First, the areas with a high flood risk are mainly restricted to central commercial areas where the main urban functions are concentrated. Additionally, the development density and urbanization are relatively high in these areas, in addition to the old center of urban areas. In the case of Changwon City, Euichang-gu and Seongsan-gu have increased the flood risk because of the high property value of commercial areas and high building density in these regions. Thus, land-use planning of these districts should be designed to reflect upon the different levels of flood risks, in addition to the preparation of anti-disaster facilities to mitigate flood damages in high flood risk areas. Urban flood risk analysis for individual land use districts would facilitate urban planners and managers to prioritize the areas with a high flood risk and to prepare responding preventive measures for more efficient flood management.


Hydrology ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 182
Author(s):  
Tarik Bouramtane ◽  
Ilias Kacimi ◽  
Khalil Bouramtane ◽  
Maryam Aziz ◽  
Shiny Abraham ◽  
...  

Urban flooding is a complex natural hazard, driven by the interaction between several parameters related to urban development in a context of climate change, which makes it highly variable in space and time and challenging to predict. In this study, we apply a multivariate analysis method (PCA) and four machine learning algorithms to investigate and map the variability and vulnerability of urban floods in the city of Tangier, northern Morocco. Thirteen parameters that could potentially affect urban flooding were selected and divided into two categories: geo-environmental parameters and socio-economic parameters. PCA processing allowed identifying and classifying six principal components (PCs), totaling 73% of the initial information. The scores of the parameters on the PCs and the spatial distribution of the PCs allow to highlight the interconnection between the topographic properties and urban characteristics (population density and building density) as the main source of variability of flooding, followed by the relationship between the drainage (drainage density and distance to channels) and urban properties. All four machine learning algorithms show excellent performance in predicting urban flood vulnerability (ROC curve > 0.9). The Classifications and Regression Tree and Support Vector Machine models show the best prediction performance (ACC = 91.6%). Urban flood vulnerability maps highlight, on the one hand, low lands with a high drainage density and recent buildings, and on the other, higher, steep-sloping areas with old buildings and a high population density, as areas of high to very-high vulnerability.


2001 ◽  
Author(s):  
Brian M. Deal ◽  
Elisabeth M. Jenicek ◽  
William J. Wolfe

2021 ◽  
Vol 13 (4) ◽  
pp. 1608
Author(s):  
Rubén Cordera ◽  
Soledad Nogués ◽  
Esther González-González ◽  
José Luis Moura

Autonomous vehicles (AVs) can generate major changes in urban systems due to their ability to use road infrastructures more efficiently and shorten trip times. However, there is great uncertainty about these effects and about whether the use of these vehicles will continue to be private, in continuity with the current paradigm, or whether they will become shared (carsharing/ridesharing). In order to try to shed light on these matters, the use of a scenario-based methodology and the evaluation of the scenarios using a land use–transport interaction model (LUTI model TRANSPACE) is proposed. This model allows simulating the impacts that changes in the transport system can generate on the location of households and companies oriented to local demand and accessibility conditions. The obtained results allow us to state that, if AVs would generate a significant increase in the capacity of urban and interurban road infrastructures, the impacts on mobility and on the location of activities could be positive, with a decrease in the distances traveled, trip times, and no evidence of significant urban sprawl processes. However, if these increases in capacity are accompanied by a large augment in the demand for shared journeys by new users (young, elderly) or empty journeys, the positive effects could disappear. Thus, this scenario would imply an increase in trip times, reduced accessibilities, and longer average distances traveled, all of which could cause the unwanted effect of expelling activities from the consolidated urban center.


2019 ◽  
Vol 31 (1) ◽  
Author(s):  
Stefan Nickel ◽  
Winfried Schröder

Abstract Background The aim of the study was a statistical evaluation of the statistical relevance of potentially explanatory variables (atmospheric deposition, meteorology, geology, soil, topography, sampling, vegetation structure, land-use density, population density, potential emission sources) correlated with the content of 12 heavy metals and nitrogen in mosses collected from 400 sites across Germany in 2015. Beyond correlation analysis, regression analysis was performed using two methods: random forest regression and multiple linear regression in connection with commonality analysis. Results The strongest predictor for the content of Cd, Cu, Ni, Pb, Zn and N in mosses was the sampled species. In 2015, the atmospheric deposition showed a lower predictive power compared to earlier campaigns. The mean precipitation (2013–2015) is a significant factor influencing the content of Cd, Pb and Zn in moss samples. Altitude (Cu, Hg and Ni) and slope (Cd) are the strongest topographical predictors. With regard to 14 vegetation structure measures studied, the distance to adjacent tree stands is the strongest predictor (Cd, Cu, Hg, Zn, N), followed by the tree layer height (Cd, Hg, Pb, N), the leaf area index (Cd, N, Zn), and finally the coverage of the tree layer (Ni, Cd, Hg). For forests, the spatial density in radii 100–300 km predominates as significant predictors for Cu, Hg, Ni and N. For the urban areas, there are element-specific different radii between 25 and 300 km (Cd, Cu, Ni, Pb, N) and for agricultural areas usually radii between 50 and 300 km, in which the respective land use is correlated with the element contents. The population density in the 50 and 100 km radius is a variable with high explanatory power for all elements except Hg and N. Conclusions For Europe-wide analyses, the population density and the proportion of different land-use classes up to 300 km around the moss sampling sites are recommended.


Sign in / Sign up

Export Citation Format

Share Document