scholarly journals Assessment of Water Quality in Tigris River of AL-Kut City, Iraq by Using GIS

2021 ◽  
Vol 318 ◽  
pp. 04001
Author(s):  
Hussein Jabar Khadim ◽  
Hasanain Owaid Oleiwi

The concerns about water contaminants affect most developing countries bypassing rivers over them. The issue is challenging to introduce water quality within the allowed limits for drinking, industrial and agricultural purposes. In the present study, physical-chemical parameters measurements of water samples taken from eleven stations were collected during six months in 2020 through flow path along the whole length of Tigris River inside AL Kut city (center of Wassit government) were investigated for six parameters are total hardness TH, hydrogen ion pH, biological oxygen demand BOD5, total dissolved solids TDS, nitrate NO3, and sulfate SO4. The water quality analysis results were compared with the maximum allowable limit concentration recommended by World Health Organization WHO and Iraqi limitation spastically; TH, BOD5, TDS, and SO4 had an average value of 421, 62, 813, and 376 mg/l, respectively. The spatial distribution of six water quality parameters within the studied area was carried out by implementing the Quantum Geography Information System QGIS technique established on the Inverse Distance Weighted IDW method to produce the interpolation predicted maps of stations along the river in Al Kut city. The results showed water quality degraded and an increase in the concentrations observed for all parameters along the river path, especially at the last two stations due to attributed to human activities, land use and industrialization, and outfall of sewerage flow to the river directly without treatment. Spatial distribution is essential to give a thorough understanding of the river's contamination reality. This makes it easier to understand, analyze and find the appropriate treatments and solutions to the problem of water quality.

2013 ◽  
Vol 13 (1) ◽  
pp. 125-131 ◽  
Author(s):  
Harish P Bhatt ◽  
Tej Bahadur Saund ◽  
Jham Bahadur Thapa

A study was carried out for preparing baseline information on water quality, population status and threats to Mugger crocodile, Crocodylus palustris Lesson at Rani Tal, Shuklaphanta Wildlife Reserve. Water quality analysis was conducted for three seasons (summer, autumn and winter) in the year 2008 - 2009. The study has found the physico-chemical contamination in the lake. The water quality parameters (dissolved oxygen, total hardness, free carbon dioxide, biological oxygen demand and ammonia) exceeded the normal range to support the Muggers. A survey around the lake recorded four adult Mugger crocodiles (>180 cm body length) basking in sandy and muddy bank during the investigation period. The lake is under pressure from diverse anthropogenic factors. The principal threats to the Mugger crocodile include water pollution, habitat destruction, sedimentation, food shortage, egg collection and seasonal fluctuation of water level. The total area and depth of the lake is diminishing due to encroachment by Phragmites karka and flash flood during monsoon. Conservation and proper management of the lake are urgently required. Nepal Journal of Science and Technology Vol. 13, No. 1 (2012) 125-131 DOI: http://dx.doi.org/10.3126/njst.v13i1.7451


Author(s):  
Vasudha Lingampally ◽  
V.R. Solanki ◽  
D. L. Anuradha ◽  
Sabita Raja

In the present study an attempt has been made to evaluate water quality and related density of Cladocerans for a period of one year, October 2015 to September 2016. Water quality parameters such as temperature, PH, total dissolved solids, dissolved oxygen, biological oxygen demand, total alkalinity, total hardness, chlorides, phosphates, and nitrates are presented here to relate with the abundance of Cladocerans. The Cladoceran abundance reflects the eutrophic nature of the Chakki talab.


2008 ◽  
Vol 5 (3) ◽  
pp. 435-446 ◽  
Author(s):  
Mayur C. Shah ◽  
Prateek G. Shilpkar ◽  
Pradip B. Acharya

Present communication deals with study of physico-chemical parameters such as pH, electrical conductivity (EC), total dissolved solids (TDS), total alkalinity (TA), calcium hardness (CaH), magnesium hardness (MgH), total hardness (TH), chloride (Cl-), fluoride (F-), sodium (Na+), potassium (K+), dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD) and sulphate (SO42-) of water samples of bore wells of forty villages of Gandhinagar taluka of Gujarat state,India. The experimental values of water samples were compared with standard values given by World Health Organization (WHO) and United State Salinity Laboratory for drinking and irrigation purposes respectively. Water Quality Index (WQI) was also calculated to know the over all quality of water samples. The statistical analysis like mean, standard deviation (SD), coefficient of variance (% CV), analysis of variance (ANOVA),t-test, coefficient of correlation (r) and regression analysis of obtained data were carried out. The results show that the quality of water is poor and quite good for drinking and irrigation purposes respectively. The variance was found significant at 1% level of significance in case of sodium and potassium content and at 5% in case of total alkalinity and dissolved oxygen among the four regions (North, South, East and West) of Gandhinagar taluka. The linear relation also established for each pair of water quality parameters of studied water samples.


2010 ◽  
Vol 61 (8) ◽  
pp. 1987-1994 ◽  
Author(s):  
A. M. Jinturkar ◽  
S. S. Deshmukh ◽  
S. V. Agarkar ◽  
G. R. Chavhan

The paper proposes fuzzy logic model that deals with the physico-chemical water analysis of ground water of Chikhli town for determination of Water Quality Index (WQI). The study was carried by collection of ground water samples from about eleven hand pumps located in this town. Ground water quality is studied by systematic collection and analysis of samples. The fuzzy logic is used for the deciding the water quality index on the basis of which, water quality rankings are given to determine the quality of water. The Water Quality Index presented here is a unitless number ranging from 1 to 10. A higher number is indicative of better water quality. Around 81% of samples were found suitable for drinking purpose. It is also observed that all the parameters fall within the permissible limits laid by WHO, ISI, and ICMR, except Total Hardness, Calcium and Magnesium. The quality parameters were compared with standards laid by the World Health Organization (WHO), Indian Standards Institute (ISI) and Indian Council of Medical Research (ICMR) for drinking water quality.


1970 ◽  
Vol 10 (5) ◽  
pp. 588-596
Author(s):  
O.A. Mokuolu ◽  
S.O. Jacob ◽  
A.M. Ayanshola

Municipal solid waste collected in Nigeria are often disposed of in uncontrolled dumpsites and/or burnt in the open spaces and consequently causing significant pollution on surface water, ground water and the air. An investigational study was carried out on the level of pollution on groundwater near Gbagede dumpsite in Kwara state. Ground water samples, GW1, GW2, GW3 were taken at three different locations: 186 m, 290 m, and 326 m from the edge of the dumpsite. Physicochemical parameters evaluated include; pH, total hardness, Total Dissolved Solids, Total Suspended Solids, alkalinity, turbidity, Chemical Oxygen Demand, Biochemical Oxygen Demand, Dissolved Oxygen, Nitrate ion, Chloride ion, Sulphate ion, Electrical conductivity, Calcium ion and Magnesium ion using standard laboratory procedures. The results of the evaluations were compared with the World Health Organization (WHO) and Nigerian Standard for Drinking Water Quality (NSDWQ) to establish its suitability for human consumption. Results fell within the stipulated range of WHO and NSDWQ standard for drinking water. It was however observed that the water quality improves with distance from the dumpsite. Statistical analyses indicated mild differences among all the parameters tested for in the samples at 95% confidence level. Uncontrolled accumulation of leachates from the dumpsite may pose potential risk to the source of water for the community in the near future. It was recommended that the dumpsite be relocated from the current residential area.Key Words: Groundwater, Assessment, Contaminants, Solid-waste, Water quality


2021 ◽  
Author(s):  
CI Chemistry International

Optimum fish production is greatly dependent on the physical, chemical and biological qualities of water. Hence, successful fish pond management requires an in-depth understanding of water quality. A study to assess heavy metal (Cr, Cd, Mn, Pb and Zn) contamination and physicochemical parameters of water samples from eight selected fish ponds in Sunyani, Ghana, was conducted. The parameters included temperature, pH, salinity, total hardness, electrical conductivity (EC), chemical oxygen demand (COD) and biological oxygen demand (BOD). The results revealed detectable Mn and Zn levels in all the selected fish ponds; with Mn levels in three ponds being significantly higher than the World Health Organization (WHO) recommended limit (< 0.500 mg/L). Of the three samples, which showed detectable Cr and Cd levels, concentrations of two exceeded the permissible limits. Pb was below the detection limit in all the samples whilst Cu levels detected in two of the ponds were below the permissible limit. The investigated physicochemical parameters had the following ranges: temperature 26-29 C, pH 5.8-8.2, BOD 0.3-20 mg/L, Total Dissolved Solids (TDS) 37-249 mg/L, EC 73.67-498 μS/cm, total hardness 0.8-5.7 mg/L, salinity 0.03-0.22 psu and COD 2.9-9.7 mg/L. Most of these values were within WHO recommended levels. The findings suggest that regular monitoring of the heavy metal load is necessary to guard against long-term effects of its presence in the water, influencing fish and human uptake.


In the framework of enhancing water resource management, the Rainwater Harvesting (RWH) system has been recognized as one of the potential solution to mitigate water crisis issues. This paper aimed to study the water quality analysis of RWH system with subsequent flushes devices; in terms of its efficiency and practicality for non-potable purposes such as irrigation and toilet flushing. The project is also meant to identify the ideal volume among the five (5) FF devices installed; to be flushed away in order for the harvested rainwater to be usable for non-potable activities (i.e. irrigation, industry and toilet flushing). A RWH model were mounted on a wall of an existing store building at Universiti Teknologi PETRONAS (UTP), Perak. A total of eight (8) rain events (set of readings) were analysed. The nine (9) parameters monitored are: pH, turbidity, dissolved oxygen (DO), total suspended solids (TSS), total coliforms (TC), chemical oxygen demand (COD), total nitrogen (TN), ammonia and nitrate. For physical water quality parameters; pH, turbidity, DO and TSS, the final reading ranges were 4.60~8.37, 0.41~1.52 NTU, 7.60~9.44 mg/L and 0~40 mg/L, respectively. Chemical parameters such as COD, TN, ammonia and nitrate were in the ranges of 0~32 mg/L, 4~12 mg/L, 0.11~0.95 mg/L and 0~1.4 mg/L, respectively. Meanwhile the biological parameter which is the TC was in the range between 0~358.5 MPN. Based on the calculations, it is deduced that a minimum of 1.02 mm of rainfall of total 10.5 mL from FF1 to FF3 is needed to be flushed away; ensuring only better quality of rainwater being stored. The FF method is very important in the application of RWH system because it diverted the first flow of rainfall that is expected to be the most contaminated. The RWH system with subsequent FF devices is suitable for non-potable purpose. Upon further treatment and model modification, the harvested rainwater shall fit for potable use.


2021 ◽  
Vol 16 (2) ◽  
pp. 514-529
Author(s):  
Hebbal Rajendra Abhilash ◽  
Malliah Mahadevaswamy

Water is an indispensable natural resource vital for the survival of all life forms. It contributes significantly to the country's economic prosperity and general well-being. As a result, understanding the status of water bodies is crucial to assure their long-term use. A study on water quality parameters and aquatic insect community was therefore carried on the surface waters of Dalvoy Lake which is spread over an area of 133.43 acres and having a length of 2.2 km. Monthly water samples were collected using one-litre labeled plastic containers from three locations between the hours of 8 a.m. and 10 a.m. Water quality analysis was conducted following standard methods and compared to drinking water specifications. The dissolved oxygen content, total hardness, conductivity, total dissolved solids, and turbidity exceeded the permissible limits. Aquatic insects were collected from the same locations and preserved in 4% formalin. A total of 15 species of aquatic insects belonging to four orders, Hemiptera, Coleoptera, Diptera, and Ephemeroptera, were identified in this study. The Hemiptera was shown to be the largest group comprising of 8 species; 4 species of Diptera; 2 species of Coleoptera and a lone species of Ephemeroptera. The computation of aquatic insect dominance status using Engelmann's Scale revealed Diplonychus rusticus, Anisops sp., Enithares sp., Chironomous sp. and Culex sp. as dominant. Biodiversity metrics like the Shannon Index (1.4-2.11) and the evenness index (0.50-0.66) reflect the agitation of the system. Based on the results of the water quality index (163.67) and aquatic insect assemblage, it is evident that the water in Dalvoy Lake is deteriorated and is unfit for domestic usage. The study also indicated the abundance of two genera Chironomous and Culex of the Diptera order which are the index of water pollution. Thus, the present study calls for urgent and strict vigilance and continuous monitoring of this perennial water body for conservation and sustainable management.


2021 ◽  
Vol 18 (2(Suppl.)) ◽  
pp. 1095
Author(s):  
Ibrahem Mahdi Al-Sudani

This study was performed on the Tigris River (Baghdad city section) during the period between December 2016 and December 2018 to assess seasonal variation in water quality using the Overall Index of Pollution (OIP). The OIP is one of the reliable tools for the assessment of surface water quality. To calculate OIP-values, eight parameters were measured ( pH, Dissolved Oxygen "DO", Biological Oxygen Demand "BOD", Total Dissolved Solid "TDS", Total Hardness "TH", calcium "Ca", Sulphate "SO4" and Alkalinity). The results showed the anthropogenic activities impact of Baghdad population that directly discharge of "inadequate treated" waste water to the river.  OIP values were acceptable (1˃OIP˃ 1.7) in 2011, 2012, 2013 and 2018. However, in 2014 and 2017,the OIP recorded values that were acceptable and tend to be slightly polluted (1.7˃OIP˃2.5). The impairment of water quality during 2014 and 2017 might be caused by the decrease in the water share feeding Tigris River from Turkey due to the construction of many dams. Also, markedly reduced rain precipitation rates were recorded in these periods.  The study suggests conducting continuous monitoring programs and establishing a reliable Iraqi classification system for water quality by a specialized scientific panel.


2015 ◽  
Vol 10 (1) ◽  
pp. 350-354 ◽  
Author(s):  
Monika Dubey ◽  
N Ujjania

In the present paper an attempt has been made to study of physico-chemical parameters of downstream in Ukai, Tapi River (Gujarat). For this study the water samples were collected at monthly interval during December 2012 to November 2013 and important water quality parameters were analyzed. Study revealed that temperature, pH, conductivity, dissolved oxygen, chemical oxygen demand, nitrate-n, total hardness, fluoride, chloride, total alkalinity and sodium were within the permissible limits whereas turbidity, biological oxygen demand, nitrite-n ammonia, phosphate and potassium were beyond the permissible limits of state, national and international authorities like GPCB, CPCB WHO and USEPA. These result depicted that water body was polluted in the form of nutrient enrichment which is due to agricultural activities and its runoff in and around catchment area of downstream.


Sign in / Sign up

Export Citation Format

Share Document