scholarly journals Utilization of robusta coffee waste as a renewable energy material - bioetanol

2018 ◽  
Vol 154 ◽  
pp. 01004
Author(s):  
Sutarno ◽  
Abdul Malik Kholiq

A research on robusta coffee waste has been conducted as a renewable energy material - Bioethanol. This research was carried out by hydrolysis and fermentation process using Zymomonasmobilis and Saccharomyces cerevisiae (Zymomonasmobilis) bacteria to obtain the best catalyst type in the process of hydrolysis of coffee skin to glucose and the effect of fermentation time on bioethanol content produced. This research was conducted by varying the fermentation time of 7 days; 8 days; 9 days and 10 days. The fermentation fluid was then distilled and tested for bioethanol using a refractometer. Furthermore, bioethanol concentration in the analysis using.

2017 ◽  
Vol 6 (2) ◽  
pp. 1-6
Author(s):  
Fatimah ◽  
Deralisa Ginting ◽  
Veronica Sirait

Bioethanol from biomass is one of energy which  has a  potential as  alternative fuel. Bioethanol can be produced by using fungi or bacteria. The research was about  the performance of Zymomonas mobilis and Saccharomyces cerevisiae to change corn cobs hydrolyzate into bioethanol by adding microbes to the influence of time and ratio of  fermentation had been done. The hydrolyzate  were decomposition of corn cobs using Trichoderma reesei and Aspergillus niger. The purpose of this study was to know the conversion of  hydrolysis of corn cobs into bioethanol with variation time of fermentation (1 day, 3 days, 5 days, and 7 days) and rate of adding microbes  (Zymomonas mobilis : Saccharomyces cerevisiae = 1:1; 1:2 and 2:1) (v/v). The glucose from corn cobs hydrolyzate was 5,869 g/ml. Fermentation wass carried out at 25 0C. Bioethanol which obtained from this study was investigated using gas chromatography. The optimum bioethanol yield was equal to 6,31% by using Zymomonas mobilis : Saccharomyces cerevisiae (2:1) and at the 3 days  fermentation time.


RSC Advances ◽  
2016 ◽  
Vol 6 (107) ◽  
pp. 105046-105055 ◽  
Author(s):  
Ze Chen ◽  
Zhou Zheng ◽  
Chenfeng Yi ◽  
Fenglian Wang ◽  
Yuanpu Niu ◽  
...  

During the batch bioethanol fermentation process, although Saccharomyces cerevisiae cells are challenged by accumulated ethanol, our previous work showed that the ethanol tolerance of S. cerevisiae increased as fermentation time increased.


2020 ◽  
Vol 1 (1) ◽  
pp. 25-31
Author(s):  
Nia Yuliani ◽  
RTM Sutamiharja ◽  
Aditya Prihantara

In the process of processing seaweed will produce residual waste from carrageenan extraction, and the residue still contain cellulose, lignin, hemicellulose, pectin, and other organic materials that can be processed into bioethanol. This research aimed to utilize the residual carrageenan extracted from seaweed Eucheuma cottonii into bioethanol. The research method includes acid hydrolysis process using 3% sulfuric acid at a temperature of 70-80oC for 30 minutes, followed by a fermentation process using yeast Saccharomyces cerevisiae with a ratio of 1: 0.006 for hydrolyzate and yeast, fermentation time treatment 1, 3, 6, 9 and 12 days at temperature 25o-30oC. Fermentate at 78oC, measured in degrees of acidity (pH), volume, and levels of bioethanol. The results showed that the residual carrageenan extract containing carbohydrates as un-extracted carrageenan was 5.01%, hemicellulose was 7.12%, cellulose was 0.96%, and lignin was 8.26%. The level of bioethanol produced from the residual carrageenan extraction was 2.57% and, the yield was 32.64% with a fermentation time of 6 days as the optimal time.


2021 ◽  
Vol 26 (2) ◽  
Author(s):  
Purbowatiningrum Ria Sarjono ◽  
Nies Suci Mulyani ◽  
Ina Noprastika ◽  
Ismiyarto Ismiyarto ◽  
Ngadiwiyana Ngadiwiyana ◽  
...  

AbstrakSaccharomyces cerevisiae merupakan khamir yang berpotensi memproduksi enzim selulase yang mampu menghidrolisis ikatan β-1,4-glikosida pada rantai selulosa untuk menghasilkan glukosa. Salah satu sumber selulosa yang mudah ditemukan dan melimpah di alam adalah eceng gondok. Glukosa yang dihasilkan dari proses hidrolisis dapat dimanfaatkan untuk produksi sirup gula, asam organik dan bioetanol. Penelitian ini bertujuan untuk mendapatkan Saccharomyces cerevisiae yang diadaptasikan pada media fermentasi eceng gondok dan memperoleh data kadar gula pereduksi dari aktivitas Saccharomyces cerevisiae dalam menghidrolisis eceng gondok pada variasi pH dan waktu fermentasi. Proses yang terlebih dahulu dilakukan terhadap eceng gondok adalah delignifikasi dengan NaOH. Saccharomyces cerevisiae diadaptasikan dalam media modifikasi eceng gondok sebagai sumber karbon. Kurva pertumbuhan Saccharomyces cerevisiae dibuat dalam media modifikasi eceng gondok untuk mengetahui waktu optimum pertumbuhan Saccharomyces cerevisiae dalam menghasilkan enzim selulase, sehingga dapat mengetahui fase eksponensial dari Saccharomyces cerevisiae. Berdasarkan penelitian diperoleh hasil bahwa Saccharomyces cerevisiae dapat tumbuh pada media fermentasi eceng gondok dan Kadar gula pereduksi tertinggi dari aktivitas Saccharomyces cerevisiae dalam menghidrolisis eceng gondok pada pH optimum 5 dan waktu fermentasi optimum dalam menghasilkan gula pereduksi pada jam ke-48 sebesar 0,267 mg/L dari 0,3 gram eceng gondok kering.Kata kunci: Saccharomyces cerevisiae, hidrolisis selulosa, pH dan waktu fermentasi


EKUILIBIUM ◽  
2013 ◽  
Vol 12 (1) ◽  
Author(s):  
Margono Margono

<p>Abstract: The policy of Indonesian Government on supporting renewable energy resources<br />developments has increased bioethanol research, both upstream or downstream processes. The<br />objective of this research was to improve bioethanol productivity using immobilized<br />Saccharomyces cerevisiaeFNCC 3012 on sugarcane baggase surfaces. Fermentation process<br />was devided into 2 steps, first was growth stepof developing biofilm and second step was<br />production process of bioethanol. Biofilm development was done for 72 hours by aerobic<br />fermentation and followed by anaerobic fermentation producing bioethanol for 72 hours. Some<br />volumetric flows of medium was implemented on the process, i.e. 1.44, 3.36 and 4.56 L/hr. The<br />best concumption of glucose in this research was showed by 20 g/L glucose in input and 0.15 g/L<br />glucose in the output medium. The increasing flowrate of medium into bioreactor results on<br />decreasing of bioethanol concentration in output of the bioreactor. The optimum medium flowrate<br />was 1.44 L/hrwhich was producing bioethanol concentration of 8.75% v/v.<br />Keywords: bioethanol, sugarcane baggase, biofilm, Saccharomyces cerevisiae FNCC 3012</p>


2018 ◽  
Vol 6 (2) ◽  
pp. 609
Author(s):  
S Saraswati

The resources and reserves of oil which is a non renewable energy are very limited, while the oil consumption is increasing continuously. It is necessary to look for alternative energy. Etanol, a liquid energy, is a renewable alternative energy. Glucose can be used as raw material for etanol production. Glucose can be obtained by enzymatic hydrolysis of bagasse which is a solid waste of sugar canefactory. The objective of this research was to get the optimum condition of etanol production using bagasse as raw material. The experimental research consisted of 2 steps. First step : enzymatic hydrolysis of bagasse with chemical pretreatment process, and the second step was fermentation process using Zymomonas mobilis bacteria. Variables of thefirst step were the NaOH concentration (5%, 7% and 9%) as a pretreatment agent, and cellulase enzyme used (30, 40 and 50 cellulase enzyme  units/gram bagasse). For the second step, the variables were glucose concentration (I2.5%, 15%, 20%, 22.5%, and 25%) and the fermentation time (20, 24, 28, 32, 36, 40 and 48 hours). The experiment showed that the best result of the enzymatic hydrolysis could be obtained by NaOH 7% as chemical pretreatment agent and using 50 units of cellulase enzyme/gram bagasse. The cellulose conversion of bagasse was 87% within 42 hours period time. The highest etanol concentration of the fermentation process was 9.238% (weight %) and the yield was 0.4912 grams etanol/gram glucose. It was reached by using 22.5% glucose during 48 hours fermentation  time.Keywords: etanol; fermentation; Zymomonas mobilis; glucose; hydrolysis; cellulase enzyme; pretreatment;bagasse AbstrakCadangan minyak bumi yang merupakan non renewable energy (energi tak terbarukan) sangat terbatas, sedang konsumsinya terus meningkat.  Untuk itu perlu  dicari energi alternatif. Etanol merupakan salah satu energi cair alternatif yang terbarukan (renewable). Bahan baku etanol antara lain adalah glukosa. Glukosa dapat diperoleh dari hidrolisa enzimatik bagas yang merupakan limbah pabrik gula. Penelitian ini bertujuan  untuk  mendapatkan  kondisi yang  optimum  dari pembuatan  etanol  dengan  bahan baku bagas. Penelitian  experimental  meliputi  dua tahap.  Tahap I  : proses  hidrolisa  enzimatik  dari bagas dengan perlakuan pendahuluan  (pretreatment), dan tahap II adalah proses fermentasi  dengan bakteri Zymomonas  mobilis.  Variabel pada  tahap I  adalah  konsentrasi  NaOH  sebagai  pretreatment   agent sebesar 5%, 7% dan 9% serta pemakaian enzim selulase : 30, 40 dan 50 unit enzim selulase/gram bagas. Variabel untuk tahap II  adalah konsentrasi glukosa:  12.5%,  15%, 20%, 22.5%  dan 25% dan waktu fermentasi  20, 24, 28, 32, 36, 40  dan 48 jam.  Hasil penelitian  menunjukkan  bahwa  untuk  hidrolisa enzimatik hasil yang terbaik diperoleh dengan NaOH 7% dan 50 unit enzim selulase/gram bagas dengan konversi selulosa 87% dan waktu 42 jam. Untuk fermentasi kadar etanol tertinggi diperoleh pada konsentrasi glukosa 22.5% yaitu sebesar 9.238%, waktu 48 jam dan yield 0.4912 gram etanollgram glukosa.Kata Kunci: etanol; fennentasi; Zymomonas mobilis; glukosa; hidrolisa ; enzim selulase; pretreatment; bagas.


2019 ◽  
Vol 16 (12) ◽  
pp. 5228-5232
Author(s):  
Kiagus A. Roni ◽  
Dorie Kartika ◽  
Hasyirullah Apriyadi ◽  
Netty Herawati

Sorghum is one of the plants that can be used as raw material for making bioethanol. Sorghum has seeds with a starch composition of 73.8%, which is potential as a raw material for making bioethanol. Sorghum starch can be converted into bioethanol through the hydrolysis process (the process of converting carbohydrates into glucose) which consists of liquefaction and saccharification processes and is followed by a fermentation process. The hydrolysis method is carried out enzymatically. In this study alpha amylase and gluco amylase enzymes were used with various types of yeast including Saccharomyces cerevisiae, Rhizopus oryzae, Acetobacter xylinum, Mucor sp, and Aspergilus niger which varied with liquefaction temperatures including 80, 85, 90, 95, and 100 °C. Obtained the most optimal yeast is Saccharomyces cerevisiae with an optimal temperature of 95 °C resulting in a bioethanol concentration of 4.3%. After getting the optimal yeast and temperature, the fermentation step of the two variables is used in the next step. In the fermentation process, variations of yeast concentration and duration of fermentation were used, the optimum yeast concentration was at 2.5% with 48 hours of fermentation resulting in bioethanol concentration of 11%.


2008 ◽  
Vol 59 (4) ◽  
Author(s):  
Neculai Catalin Lungu ◽  
Maria Alexandroaei

The aim of the present work is to offer a practical methodology to realise an Arrhenius type kinetic model for a biotechnological process of alcoholic fermentation based on the Saccharomyces cerevisiae yeast. Using the experimental data we can correlate the medium temperature of fermentation with the time needed for a fermentation process under imposed conditions of economic efficiency.


2018 ◽  
Vol 69 (6) ◽  
pp. 1363-1366 ◽  
Author(s):  
Stefania Daniela Bran ◽  
Petre Chipurici ◽  
Mariana Bran ◽  
Alexandru Vlaicu

This paper has aimed at evaluating the concentration of bioethanol obtained using sunflower stem as natural support, molasses as carbon source and Saccharomyces cerevisiae yeast in a continuous flow reactor. The natural support was tested to investigate the immobilization/growth of S. cerevisiae yeast. The concentration of bioethanol produced by fermentation was analyzed by gas chromatography using two methods: aqueous solutions and extraction in organic phase. The CO2 flow obtained during the fermentation process was considered to estimate when the yeast was deactivated. The laboratory experiments have highlighted that the use of plant-based wastes to bioconversion in ethanol could be a non-pollutant and sustainable alternative.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 724
Author(s):  
Miguel L. Sousa-Dias ◽  
Vanessa Branco Paula ◽  
Luís G. Dias ◽  
Letícia M. Estevinho

This work studied the production of mead using second category honey and the immobilized cells of Saccharomyces cerevisiae in sodium alginate, with concentrations of 2% and 4%, and their reuse in five successive fermentations. The immobilized cells with 4% alginate beads were mechanically more stable and able to allow a greater number of reuses, making the process more economical. The fermentation’s consumption of sugars with free cells (control) and immobilized cells showed a similar profile, being completed close to 72 h, while the first use of immobilized cells finished at 96 h. The immobilized cells did not significantly influence some oenological parameters, such as the yield of the consumed sugars/ethanol, the alcohol content, the pH and the total acidity. There was a slight increase in the volatile acidity and a decrease in the production of SO2. The alginate concentrations did not significantly influence either the parameters used to monitor the fermentation process or the characteristics of the mead. Mead fermentations with immobilized cells showed the release of cells into the wort due to the disintegration of the beads, indicating that the matrix used for the yeast’s immobilization should be optimized, considering the mead production medium.


Sign in / Sign up

Export Citation Format

Share Document