scholarly journals The impact of fog nozzle type on the distribution of mass spray density

2018 ◽  
Vol 247 ◽  
pp. 00058 ◽  
Author(s):  
Wiktor Wąsik ◽  
Agata Walczak ◽  
Tomasz Węsierski

This study was undertaken to analyze the influence of nozzle type on a mass spray density. The results indicated that the most uniform droplet distribution and spraying area was observed for the impact nozzle P 54. The highest mass spray density and the lowest spraying were noticed for the spiral nozzle TF 6. The high values of mass spray density for TF 6 nozzle were associated with the high K-factor value and the low spray angle. The results also showed that the construction of spiral nozzles influence the stream structure. The value of average mass spray density was twice as low for CW-50 F nozzle compared to TF 6.

Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 151
Author(s):  
Beata Cieniawska ◽  
Katarzyna Pentos

The purpose of the research was to determine the influence of selected factors on the average degree of coverage and uniformity of liquid spray coverage using selected single and dual flat fan nozzles. The impact of nozzle type, spray pressure, driving speed, and spray angle on the average degree of coverage and coverage unevenness coefficient were studied. The research was conducted with special spray track machinery designed and constructed to control and change the boom height, spray angle, driving speed, and spray pressure. Based on the research results, it was found that the highest average coverage was obtained for single standard flat fan nozzles and dual anti-drift flat fan nozzles. At the same time, the highest values of unevenness were observed for these nozzles. Inverse relationships were obtained for air-induction nozzles. Maximization of coverage with simultaneous minimization of unevenness can be achieved by using a medium droplet size for single flat fan nozzles (volume median diameter (VMD) = 300 μm) and coarse droplet size for dual flat fan nozzles (VMD = 352 μm), with low driving speed (respectively 1.1 m∙s−1 and 1.6 m∙s−1) and angling of the nozzle by 20° in the opposite direction to the direction of travel.


2017 ◽  
Vol 17 (4) ◽  
pp. 799-801
Author(s):  
Jih-Chien Liao ◽  
Ting-Chang Chang ◽  
Wei-Ren Syong ◽  
Ying-Hsin Lu ◽  
Hsi-Wen Liu ◽  
...  
Keyword(s):  
High K ◽  

2021 ◽  
Author(s):  
Rishu Chaujar ◽  
Mekonnen Getnet Yirak

Abstract In this work, junctionless double and triple metal gate high-k gate all around nanowire field-effect transistor-based APTES biosensor has been developed to study the impact of ITCs on device sensitivity. The analytical results were authenticated using ‘‘ATLAS-3D’’ device simulation tool. Effect of different interface trap charge on the output characteristics of double and triple metal gate high-k gate all around junctionless NWFET biosensor was studied. Output characteristics, like transconductance, output conductance,drain current, threshold voltage, subthreshold voltage and switching ratio, including APTES biomolecule, have been studied in both devices. 184% improvement has been investigated in shifting threshold voltage in a triple metal gate compared to a double metal gate when APTES biomolecule immobilizes on the nanogap cavity region under negative ITCs. Based on this finding, drain off-current ratio and shifting threshold voltage were considered as sensing metrics when APTES biomolecule immobilizes in the nanogap cavity under negative ITCs which is significant for Alzheimer's disease detection. We signifies a negative ITC has a positive impact on our proposed biosensor device compared to positive and neutral ITCs.


2010 ◽  
Vol 14 (2) ◽  
pp. 479-491 ◽  
Author(s):  
Fathollah Ommi ◽  
Koros Nekofar ◽  
Amir Kargar ◽  
Ehsan Movahed

In this work the fundamentals of swirl injector calculation is investigated and new design procedure is proposed. The design method for double-base liquid-liquid injectors is presented based on this theory and experimental results. Then special conditions related to double based liquid-liquid injectors are studied and the corresponding results are applied in design manipulation. The behavior of injector in various performing conditions is studied, and the design procedure is presented based on obtained results. A computer code for designing the injector is proposed. Based on this code, four injectors are manufactured. A specialized laboratory was setup for the measurement of macroscopic spray characteristics under different pressure such as homogeneous droplet distribution, spray angle, and swirl effect. Finally, through phase Doppler analyzer cold test, the microscopic characteristics of injectors spray are also obtained and measured. The results which will be explained in detail are satisfactory.


2021 ◽  
Author(s):  
SHIKHA U S ◽  
Rekha K James ◽  
Jobymol Jacob ◽  
Anju Pradeep

Abstract The drain current improvement in a Negative Capacitance Double Gate Tunnel Field Effect Transistor (NC-DG TFET) with the help of Heterojunction (HJ) at the source-channel region is proposed and modeled in this paper. The gate oxide of the proposed TFET is a stacked configuration of high-k over low-k to improve the gate control without any lattice mismatches. Tangent Line Approximation (TLA) method is used here to model the drain current accurately. The model is validated by incorporating two dimensional simulation of DG-HJ TFET with one dimensional Landau-Khalatnikov (LK) equation. The model matches excellently with the device simulation results. The impact of stacked gate oxide topology is also studied in this paper by comparing the characteristics with unstacked gate oxide. Voltage amplification factor (Av), which is an important parameter in NC devices is also analyzed.


1997 ◽  
Vol 11 (4) ◽  
pp. 639-643 ◽  
Author(s):  
Thomas C. Mueller ◽  
Alvin R. Womac

When spray mixtures were examined using a laser spray droplet analyzer, the new isopropylamine glyphosate formulation produced more small droplets than a previous isopropylamine salt of glyphosate formulation or glyphosate–trimesium plus nonionic surfactant. The use of a pre-orifice flat-fan nozzle and an impact type flat-fan nozzle reduced the amount of small droplets produced compared to an existing extended range flat-fan nozzle, while maintaining a spray droplet distribution that could still provide good weed control. The new nozzle technologies could provide a useful management tool to manage potential drift situations.


Author(s):  
Benjamin M. Regner ◽  
Timothy A. Shedd

Spray cooling is a candidate solution for high heat flux cooling applications, and previous work has investigated the impact of parameters of conical sprays such as volumetric flux and Sauter mean diameter on heat transfer performance. However, there has been little work on the impact of drainage and spray orientation on spray performances. In addition, conical sprays are not very practical for large area coverage in compact packages, so this study, presents a novel arrangment that uses linear sprays impinging at an angle such that fluid management and uniform droplet coverage of large areas are both improved. Results for the heat transfer coefficient and CHF of a constrained, practical implementation of a spray array (as opposed to a laboratory-only geometry) are presented for FC-72, FC-40 and HFE-7000.


Author(s):  
Matthew J. Dooley

This paper discusses how relative humidity impacts the effectiveness of an evaporative cooler, the uncertainty of the calculated effectiveness and the corresponding impact of the limits of this uncertainty on the power output. This is particularly related to a combined cycle facility where performance guarantees are based upon the evaporative cooler being in service. Different options for testing with and without the evaporative cooler in service are discussed as well as the need for an uncertainty when using a K factor.


Sign in / Sign up

Export Citation Format

Share Document