scholarly journals Modification of Conventional Drainage System Using Recharge Well

2019 ◽  
Vol 280 ◽  
pp. 04017
Author(s):  
Astuti Sri Amini Yuni ◽  
Anggraheni Dinia

One of the popular recharge systems is a recharge well that directly receive rainwater from the roof of the house. In this study, recharge wells will be introduced and analyzed in a modification of conventional drainage. Area for this research was taken in Kimpulan Village, Sleman, Yogyakarta. Input discharge that enters the recharge well used free-flow formula through holes or pipes. The dimensions of recharge wells followed the Sunjoto’s formula, but with T is the time of concentration, not the duration of the dominant rainfall. The result of this study showed that recharge well reduced the maximum discharge and dimensions of the channel. The reduction depends on the diameter of the connecting pipe, the height difference of the water level, depth of groundwater and permeability of the soil in the area. If a diameter pipe of 20 cm and a height difference of 1 m are used, it reduced the runoff discharge more than 17.3%. For the study area, it was not feasible to build additional recharge wells, because it required a large number of wells, approximately 58 pieces, due to very small soil permeability of 3.5.10-5 m/s.

2018 ◽  
Vol 204 ◽  
pp. 03017
Author(s):  
Gilang Idfi ◽  
Anie Yulistyorini ◽  
Tika Apriliani

This study aims to investigate the plan design and reduction of the runoff discharge using the eco-drainage system in the form of injection well. This research was conducted through an analysis of the injection well plan design at Graha Rektorat of the State University of Malang (SUM) and testing of soil permeability coefficient in the laboratory using Falling Head Permeability method. The result showed that design of injection wells using 1.5 m diameter and 3 m of depth for ten injection wells reduced drainage load by 44%, 34.35%, and 28.9% at return period of 2, 5, and 10 years respectively and the value of soil permeability coefficient was 2.01 cm/hour.


1997 ◽  
Vol 24 ◽  
pp. 288-292 ◽  
Author(s):  
Andrew P. Barrett ◽  
David N. Collins

Combined measurements of meltwater discharge from the portal and of water level in a borehole drilled to the bed of Findelengletscher, Switzerland, were obtained during the later part of the 1993 ablation season. A severe storm, lasting from 22 through 24 September, produced at least 130 mm of precipitation over the glacier, largely as rain. The combined hydrological records indicate periods during which the basal drainage system became constricted and water storage in the glacier increased, as well as phases of channel growth. During the storm, water pressure generally increased as water backed up in the drainage network. Abrupt, temporary falls in borehole water level were accompanied by pulses in portal discharge. On 24 September, whilst borehole water level continued to rise, water started to escape under pressure with a resultant increase in discharge. As the drainage network expanded, a large amount of debris was flushed from a wide area of the bed. Progressive growth in channel capacity as discharge increased enabled stored water to drain and borehole water level to fall rapidly. Possible relationships between observed borehole water levels and water pressures in subglacial channels are influenced by hydraulic conditions at the base of the hole, distance between the hole and a channel, and the nature of the substrate.


2021 ◽  
Vol 104 ◽  
pp. 47-56
Author(s):  
Rossana Margaret Kadar Yanti ◽  
Oryza Lhara Sari ◽  
Rizjal Wahyu

Two main building Kalimantan Institute of Technology was established on an area of 3500 m2 on October 6, 2014 which serves as the infrastructure for teaching and learning activities of students. The rapid increase in the number of students each year results in an increase in the number of buildings as facilities for teaching and learning. This is the background for the development of the Kalimantan Institute of Technology area by adding five more lecture buildings to support teaching and learning activities for 3500 students. The expansion area for five more lecture buildings is currently under construction in the area of ​​the Faculty of Mathematics and Natural Sciences. The function of the land area has been change due to building construction resulted in an increase in runoff discharge. This condition certainly affects the region if not handled properly. Increased runoff discharge will affect inundation or flooding in the area if it is not equipped with a drainage system as needed. This research is one alternative solution given. This research is in the form of a study on the implementation of a drainage master plan that aims to obtain drainage dimensions such as drainage width, drainage length and drainage depth by observing runoff due to rainwater using the concept of environmentally friendly drainage. The research obtained from the dimensions of tertiary canals with dimensions of 0.10-0.30 meters, secondary channels 0.30-0.45 meters and primary channels 0.35-0.70 meters with the discharge area of ​​the Faculty of Mathematics and Natural Sciences ITK is 1.18 m3/ sec.


Water ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 111 ◽  
Author(s):  
Changshu Wang ◽  
Jingwei Wu ◽  
Wenzhi Zeng ◽  
Yan Zhu ◽  
Jiesheng Huang

The dry drainage system (DDS) is an alternative technique for controlling salinization. To quantify its role in soil salinity control, a five-year field observation from 2007 to 2011 was completed in a 2900 ha experimental plot in Yonglian Experimental Station, Hetao Irrigation District, China. Results showed that the groundwater table depth in the fallow areas quickly responded to the lateral recharge from the surrounding croplands during irrigation events. The groundwater electrical conductivity (GEC) of fallow areas increased from 5 mS·cm−1 to 15 mS·cm−1, whereas the GEC below croplands produced small fluctuations. The analysis of water and salt balance showed that the excess water that moved to fallow was roughly four times that moved by an artificial drainage system and with 7.7 times the corresponding salt. The fallow areas act as a drainage repository to receive excess water and salt from surrounding irrigated croplands. Slight salt accumulation occurred in irrigated croplands and salts accumulated, with an accelerating trend over the final two years. The evaporation capability weakened, partly due to the salt crust in the topsoil, and the decrease in soil permeability in the soil column, which was almost impermeable to water. Using halophytes may be an effective method to remove salts that have accumulated in fallow areas, having great economic and ecological value. A DDS may be effective and sustainable in situations where the fallow areas can sustain an upward capillary flux from planted halophytes.


1997 ◽  
Vol 24 ◽  
pp. 288-292 ◽  
Author(s):  
Andrew P. Barrett ◽  
David N. Collins

Combined measurements of meltwater discharge from the portal and of water level in a borehole drilled to the bed of Findelengletscher, Switzerland, were obtained during the later part of the 1993 ablation season. A severe storm, lasting from 22 through 24 September, produced at least 130 mm of precipitation over the glacier, largely as rain. The combined hydrological records indicate periods during which the basal drainage system became constricted and water storage in the glacier increased, as well as phases of channel growth. During the storm, water pressure generally increased as water backed up in the drainage network. Abrupt, temporary falls in borehole water level were accompanied by pulses in portal discharge. On 24 September, whilst borehole water level continued to rise, water started to escape under pressure with a resultant increase in discharge. As the drainage network expanded, a large amount of debris was flushed from a wide area of the bed. Progressive growth in channel capacity as discharge increased enabled stored water to drain and borehole water level to fall rapidly. Possible relationships between observed borehole water levels and water pressures in subglacial channels are influenced by hydraulic conditions at the base of the hole, distance between the hole and a channel, and the nature of the substrate.


1993 ◽  
Vol 39 (131) ◽  
pp. 15-25 ◽  
Author(s):  
A. Iken ◽  
Κ. Echelmeyer ◽  
W. Harrison ◽  
M. Funk

AbstractSeveral holes were drilled to depths of 1500–1630 m along a profile across Jakobshavns Isbræ, 50 km upstream from the calving front. Drilling was by hot water and required approximately 20 h. The holes were rapidly closed by refreezing, but it was possible to instrument them with thermistors and tilt sensors before this occurred.Near the margins of the ice stream the holes reached the bed and connected with the subglacial drainage system. Water-level changes recorded in these holes are discussed in terms of the basal hydraulic system. The temperature measurements show that the glacier is temperate-based. Moreover, extrapolation of a measured temperature profile and its curvature suggests that a temperate layer of substantial thickness may exist at the bed near the center of the ice stream. There is a striking difference in the shapes of temperature profiles measured at different locations: beneath the center line the temperature minimum is at a considerably smaller relative depth than near the margins, but it is nearly the same in magnitude (−22.1°C). This may indicate a disproportionately large vertical stretching of the basal ice in the center of the ice stream. Since the basal ice is warmer and much less viscous than the ice above, a thickening of that layer would cause a corresponding increase of surface velocity. We presume that this mechanism contributes to the fast flow of Jakobshavns Isbræ.


2020 ◽  
pp. 316-316
Author(s):  
Jie Yang ◽  
Wei Wang ◽  
Lin Hu ◽  
Yulan Gao ◽  
Yuezan Tao

In the process of exploiting geothermal energy by groundwater heat pump (GWHP), the dynamic equilibrium of regional groundwater drawdown is the basis for sustained operation of GWHP. In this paper, taking the GWHP project of Fuyang People's Hospital in Anhui, China as an example, a mathematical model is established and numerical simulation is carried out based on the hydrogeological conceptual model by using Modflow software. In addition, considering the pattern of same direction recharge, the intersect recharge and the ratio of 90% and 100% reinjection respectively, the area change of the drawdown funnel caused by the GWHP project and the recovery of the water level after the system stopped operation are analyzed. The results show that the funnel area of the pumping well under the 90% recharge ratio is greater than that of the 100% recharge, while the operation result of recharge well is opposite in the most adverse situation of the system with a production volume of 1440m3/d and continuous operation for 4 months. Furthermore, with the same reinjection ratio, the funnel area of the same direction recharge mode is larger than that of the intersect recharge mode in both pumping wells and recharge wells, and increases with the decrease of drawdown. Moreover, with the increase of recharge amount, while the water level of recharge well rises, there is a certain supplement and balance to the water quantity of the pumping well.


2022 ◽  
Vol 1212 (1) ◽  
pp. 012038
Author(s):  
H Azikin ◽  
Nurhidayat ◽  
E Affandy ◽  
S S Syahruddin

Abstract The use of energy, especially electrical power, is needed by the wider community— lots of alternative energy from nature, especially in Indonesia that can be utilized to produce electricity. One of the newest alternative examples is the energy produced by tides. Tidal energy is a type of renewable energy that is relatively more predictable in number. One method that can process the waves is the Least Square Method. Where the results of data processing using this method can be known based on tidal observations for 15 days on Toaya Beach located in Donggala Regency, Central Sulawesi, the types of tidal types that occur based on the results of Formzahl’s count is 0.357 that the tidal types that occur are varied types leaning to double daily, with a Root Mean Square Error (RMSE) of 0.028, which means that the difference between predictive results and observational data is accurate. Then also obtained the value of the design water level elevation that is the highest high water level (HHWL) is 2.7 meters, and the lowest low water level (LLWL) is -0.3 meters with a height difference is 3.0 meters. So with the high height difference, the total energy generated by two times a day with a sea area of 9 km2 which is capable of producing energy movement from seawater can be calculated the potential energy generated from the waves of Toaya Beach, which is 5,53 MW.


Biologia ◽  
2009 ◽  
Vol 64 (3) ◽  
Author(s):  
Daniel Szejba ◽  
Ireneusz Cymes ◽  
Jan Szatylowicz ◽  
Slawomir Szymczyk

AbstractThe aim of this study is to evaluate the impact of a drainage system on soil water conditions in a loam soil compared to that in undrained clay loam soil under various topographic conditions. The soils are located on a sloping area at Lidzbark Warminski experimental site (Poland) with well surface water outflow conditions and used as a pasture. The loam soil was drained with ceramic drainage pipes with an average drain spacing of 14 m and an average drain depth of 0.9 m, while the clay loam soil profile was not drained. The research was conducted during the period from 1999 to 2005. Ground water level as well as soil moisture content were measured monthly for both soil profiles. Meteorological conditions (precipitation and data for calculation of reference evapotranspiration) were also recorded. The results obtained show that in the loam soil (drained site) water level is on average 42 cm higher compared to that in the clay loam soil (not drained site). In both soils the amplitude of the ground water level changes was relatively high and exceeds 300 cm. In the drained loam soil, the water level position exceeded the depth of the drainage system in very wet, wet and average years. Under wet meteorological conditions the increase in ground water levels in the clay loam soil was slower than in the loam soil.


Sign in / Sign up

Export Citation Format

Share Document