scholarly journals Array model of shock pressure sensor for shooting point detection

2022 ◽  
Vol 355 ◽  
pp. 01027
Author(s):  
Changlong Zhou ◽  
Yingjun Li ◽  
Guicong Wang ◽  
Xue Yang

The array model of double-T shock pressure sensor is established. Shock wave is produced by a supersonic object in the air. Pressure is produced in the process of shock wave transmission. Different shock pressure sensors have different time to receive the pressure signal. In this paper, the shooting point calculation model and the finite element model of the double T-shaped array method are established. The simulation experiment is carried out. The law of shock wave propagation is verified. The model can be used to calculate the coordinates of shooting point quickly. This method is suitable for small angle oblique fire location problem, and improves the detection accuracy of shooting point.

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Bo Xu ◽  
Tailin Han ◽  
Hong Liu ◽  
Xiao Wang ◽  
Mingchi Ju

In the process of transient test, due to the insufficient bandwidth of the pressure sensor, the test data is inaccurate. Firstly, based on the projection of the shock tube test signal in the sparse domain, the feature expression of the signal sample is obtained. Secondly, the problem of insufficient bandwidth is solved by inverse modeling of sensor dynamic compensation system based on swarm intelligence algorithm. In this paper, the method is used to compensate the shock tube test signals of the 85XX series pressure sensors made by the Endevco company of the United States, the working bandwidth of the sensor is widened obviously, the rise time of the pressure signal can be compensated to 12.5 μs, and the overshoot can be reduced to 8.96%. The repeatability of dynamic compensation is verified for the actual gun muzzle shock wave test data, the results show that the dynamic compensation can effectively recover the important indexes such as overpressure peak value and positive pressure action time, and the original shock wave signal is recovered from the high resonance data.


Author(s):  
Amal Z. Hajjaj ◽  
Md Abdullah Al Hafiz ◽  
Nouha Alcheikh ◽  
Mohammad I. Younis

We experimentally demonstrate a new pressure sensor that offers the flexibility of being scalable to small sizes up to the nano regime. Unlike conventional pressure sensors that rely on large diaphragms and big-surface structures, the principle of operation here relies on convective cooling of the air surrounding an electrothermally heated resonant structure, which can be a beam or a bridge. This concept is demonstrated using an electrothermally tuned and electrostatically driven MEMS resonator, which is designed to be deliberately curved. We show that the variation of pressure can be tracked accurately by monitoring the change in the resonance frequency of the resonator at a constant electrothermal voltage. We show that the range of the sensed pressure and the sensitivity of detection are controllable by the amount of the applied electrothermal voltage. Theoretically, we verify the device concept using a multi-physics nonlinear finite element model. The proposed pressure sensor is simple in principle and design and offers the possibility of further miniaturization to the nanoscale.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Lung-Tai Chen ◽  
Wood-Hi Cheng

This study presents a novel technique for an overmolded package of piezoresistive pressure sensors using an ultrathick photoresist sacrificial layer. A 150 μm photoresist block is placed just on the silicon membrane of the pressure sensor and removed after the molding transfer process. The removal of the photoresist block exposes and reserves a sensing channel in the overmolded pressure sensor package. Experimental observations reveal that the silicon membrane of the pressure sensor is completely free of any epoxy molding compound contamination after the transfer molding process. The effectiveness of the photoresist block in shielding the silicon membrane of the pressure sensor was confirmed. Experiment and finite element model results reveal that the packaged pressure sensor has similar sensing characteristics to those of an unpackaged pressure sensor at room temperature. However, the packaged pressure sensor exerts a thermomechanical stress on the silicon membrane of the pressure sensor, resulting in an undesired output voltage drift. Employing a proper package design can reduce the output voltage drift. The proposed packaging scheme has a small package volume and surface mount device compatible features, making it suitable for portable commercial devices.


2017 ◽  
Vol 730 ◽  
pp. 607-612
Author(s):  
Chen Li ◽  
De Ren Kong ◽  
Shuang Ji Feng ◽  
Man Wang

In blast field test, strong mechanical shock and vibration affect the output of blast pressure sensors. To avoid this phenomenon, a pressure sensor vibration reduction installation structure was designed for the measurements of ground reflection pressure. The damping material was used in the installation structure. And certain blast field test had been carried out. The data from the field blast test was compared to transducers with vibration reduction and transducers without vibration reduction. The results show that the obvious effect of the vibration reduction can eliminate vibration interference. And it is suitable for the measurements of shock wave over-pressure in blast field test.


2020 ◽  
Vol 8 (4) ◽  
pp. 296-307
Author(s):  
Konstantin Krestovnikov ◽  
Aleksei Erashov ◽  
Аleksandr Bykov

This paper presents development of pressure sensor array with capacitance-type unit sensors, with scalable number of cells. Different assemblies of unit pressure sensors and their arrays were considered, their characteristics and fabrication methods were investigated. The structure of primary pressure transducer (PPT) array was presented; its operating principle of array was illustrated, calculated reference ratios were derived. The interface circuit, allowing to transform the changes in the primary transducer capacitance into voltage level variations, was proposed. A prototype sensor was implemented; the dependency of output signal power from the applied force was empirically obtained. In the range under 30 N it exhibited a linear pattern. The sensitivity of the array cells to the applied pressure is in the range 134.56..160.35. The measured drift of the output signals from the array cells after 10,000 loading cycles was 1.39%. For developed prototype of the pressure sensor array, based on the experimental data, the average signal-to-noise ratio over the cells was calculated, and equaled 63.47 dB. The proposed prototype was fabricated of easily available materials. It is relatively inexpensive and requires no fine-tuning of each individual cell. Capacitance-type operation type, compared to piezoresistive one, ensures greater stability of the output signal. The scalability and adjustability of cell parameters are achieved with layered sensor structure. The pressure sensor array, presented in this paper, can be utilized in various robotic systems.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4419
Author(s):  
Ting Li ◽  
Haiping Shang ◽  
Weibing Wang

A pressure sensor in the range of 0–120 MPa with a square diaphragm was designed and fabricated, which was isolated by the oil-filled package. The nonlinearity of the device without circuit compensation is better than 0.4%, and the accuracy is 0.43%. This sensor model was simulated by ANSYS software. Based on this model, we simulated the output voltage and nonlinearity when piezoresistors locations change. The simulation results showed that as the stress of the longitudinal resistor (RL) was increased compared to the transverse resistor (RT), the nonlinear error of the pressure sensor would first decrease to about 0 and then increase. The theoretical calculation and mathematical fitting were given to this phenomenon. Based on this discovery, a method for optimizing the nonlinearity of high-pressure sensors while ensuring the maximum sensitivity was proposed. In the simulation, the output of the optimized model had a significant improvement over the original model, and the nonlinear error significantly decreased from 0.106% to 0.0000713%.


Nanoscale ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 6076-6086
Author(s):  
Gen-Wen Hsieh ◽  
Shih-Rong Ling ◽  
Fan-Ting Hung ◽  
Pei-Hsiu Kao ◽  
Jian-Bin Liu

Zinc oxide tetrapod is introduced for the first time within a poly(dimethylsiloxane) dielectric matrix for the formation of ultrasensitive piezocapacitive pressure sensors.


2013 ◽  
Vol 647 ◽  
pp. 315-320 ◽  
Author(s):  
Pradeep Kumar Rathore ◽  
Brishbhan Singh Panwar

This paper reports on the design and optimization of current mirror MOSFET embedded pressure sensor. A current mirror circuit with an output current of 1 mA integrated with a pressure sensing n-channel MOSFET has been designed using standard 5 µm CMOS technology. The channel region of the pressure sensing MOSFET forms the flexible diaphragm as well as the strain sensing element. The piezoresistive effect in MOSFET has been exploited for the calculation of strain induced carrier mobility variation. The output transistor of the current mirror forms the active pressure sensing MOSFET which produces a change in its drain current as a result of altered channel mobility under externally applied pressure. COMSOL Multiphysics is utilized for the simulation of pressure sensing structure and Tspice is employed to evaluate the characteristics of the current mirror pressure sensing circuit. Simulation results show that the pressure sensor has a sensitivity of 10.01 mV/MPa. The sensing structure has been optimized through simulation for enhancing the sensor sensitivity to 276.65 mV/MPa. These CMOS-MEMS based pressure sensors integrated with signal processing circuitry on the same chip can be used for healthcare and biomedical applications.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 569
Author(s):  
Jianzhong Chen ◽  
Ke Sun ◽  
Rong Zheng ◽  
Yi Sun ◽  
Heng Yang ◽  
...  

In this study, we developed a radial artery pulse acquisition system based on finger-worn dense pressure sensor arrays to enable three-dimensional pulse signals acquisition. The finger-worn dense pressure-sensor arrays were fabricated by packaging 18 ultra-small MEMS pressure sensors (0.4 mm × 0.4 mm × 0.2 mm each) with a pitch of 0.65 mm on flexible printed circuit boards. Pulse signals are measured and recorded simultaneously when traditional Chinese medicine practitioners wear the arrays on the fingers while palpating the radial pulse. Given that the pitches are much smaller than the diameter of the human radial artery, three-dimensional pulse envelope images can be measured with the system, as can the width and the dynamic width of the pulse signals. Furthermore, the array has an effective span of 11.6 mm—3–5 times the diameter of the radial artery—which enables easy and accurate positioning of the sensor array on the radial artery. This study also outlines proposed methods for measuring the pulse width and dynamic pulse width. The dynamic pulse widths of three volunteers were measured, and the dynamic pulse width measurements were consistent with those obtained by color Doppler ultrasound. The pulse wave velocity can also be measured with the system by measuring the pulse transit time between the pulse signals at the brachial and radial arteries using the finger-worn sensor arrays.


2009 ◽  
Vol 74 ◽  
pp. 149-152
Author(s):  
X.M. Zhang ◽  
M. Yu ◽  
Silas Nesson ◽  
H. Bae ◽  
A. Christian ◽  
...  

This paper reports the development of a miniature pressure sensor on the optical fiber tip for in vitro measurements of rodent intradiscal pressure. The sensor element is biocompatible and can be fabricated by simple, batch-fabrication methods in a non-cleanroom environment with good device-to-device uniformity. The fabricated sensor element has an outer diameter of only 366 μm, which is small enough to be inserted into the rodent discs without disrupting the structure or altering the intradiscal pressures. In the calibration, the sensor element exhibits a linear response to the applied pressure over the range of 0 - 70 kPa, with a sensitivity of 0.0206 μm/kPa and a resolution of 0.17 kPa.


Sign in / Sign up

Export Citation Format

Share Document