scholarly journals Zero-trans fats designed by enzyme-catalyzed interesterification of rice bran oil and fully hydrogenated rice bran oil

OCL ◽  
2021 ◽  
Vol 28 ◽  
pp. 46
Author(s):  
Nicolás Callejas Campioni ◽  
Leopoldo Suescun Pereyra ◽  
Ana Paula Badan Ribeiro ◽  
Iván Jachmanián Alpuy

Zero-trans edible fats attractive to be used for shortenings or margarines were designed solely from rice bran oil (RBO). For this purpose, RBO was fully hydrogenated, blended with the original oil at different percentages, and finally, blends were interesterified by an enzyme-catalyzed process. The interesterification process reduced the concentration of trisaturated and triunsaturated triglycerides and increased the concentration of medium saturation degree molecules, thus increasing their compatibility and causing the moderation of the melting point, as compared with blends. Conversely to blends, products showed a high tendency to crystallize under the β’ polymorph, which is the preferred one for products destined for many edible applications. Results demonstrated that the proper combination of different technologies (total hydrogenation, blending and interesterification) is a versatile and useful technology for designing zero-trans fats from RBO, attractive for the confection of shortenings or margarines for different applications depending on the proportion of each component in the starting blend. This strategy offers an attractive alternative for the diversification of RBO utilization, a valuable vegetable oil still underexploited, providing attractive fats useful for structuring different type of foods.

OCL ◽  
2020 ◽  
Vol 27 ◽  
pp. 4 ◽  
Author(s):  
Nadia Segura ◽  
Iván Jachmanián

The aim of this study was to analyze in detail the changes produced by the enzymatic interesterification of BT/RBO blends (beef tallow/rice bran oil) at different proportions, as an alternative for production of trans free fats. It was observed that the increase in the oil content produced a range of the content of saturated fatty acids from 20 to 38% in the blend and a range of polyunsaturated fatty acids from 35 to 18%. In TAG composition, the SUU and SSS type (S: saturated fatty acid; U: unsaturated fatty acid) increased in concentration as a result of interesterification process and this effect was more noticeable when the blend was richer in oil, arriving at 19 and 4% respectively in 50:50 BT/RBO blend. These variations in composition greatly improved the plastic range of BT. The process studied produced new trans free fatty materials with improving suitability as food ingredients. Therefore, promising new materials were developed.


Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1197
Author(s):  
Mayara S. Rodrigues ◽  
Rafaela M. Dos Passos ◽  
Paula V. de A. Pontes ◽  
Marcela C. Ferreira ◽  
Antonio J. A. Meirelles ◽  
...  

Rice bran oil is a highly nutritious vegetable oil, as it is rich in tocols and γ-oryzanol. Degumming is the first step in the vegetable oil refining process, and its main objective is the removal of phospholipids or gums. In the present study, enzymatic degumming trials were performed on crude rice bran oil using the phospholipases PLA1, Purifine® PLC, their mixture (PLA1/PLC), and a cocktail known as Purifine® 3G. Enzymatic degumming applying 50 mg/kg of PLA1 for 120 min resulted in a residual phosphorus content of 10.4 mg/kg and an absolute free fatty acid increase of 0.30%. Enzymatic degumming applying 300 mg/kg of Purifine® PLC for 120 min at 60 °C resulted in a residual phosphorus content of 67 mg/kg and an absolute diacylglycerol increase of 0.41%. The mixture of phospholipases and the cocktail presented approximately 5 mg/kg of residual phosphorus content after the reaction times. For all degumming processes, the preservation of minor components such as tocols and γ-oryzanol were observed. These results indicate that the use of enzyme mixtures or their cocktails to attain low phosphorus content and high diacylglycerol/free fatty acid conversion during enzymatic degumming is a viable alternative.


2015 ◽  
Vol 830-831 ◽  
pp. 160-163 ◽  
Author(s):  
K.M. Pranesh Rao ◽  
K. Narayan Prabhu

Quench hardening is a process where an alloy is heated to solutionizing temperature and held for a definite period, and then rapidly cooled in a quenching medium. Selection of quenchant that can yield desired properties is essential as it governs heat extraction process during quenching. In the present work, the cooling performance of vegetable oil and mineral-vegetable oil blend quench media was assessed. The vegetable oils used in this work were olive oil, canola oil and rice bran oil. The mineral-vegetable oil blends were prepared by blending 10 and 20 vol. % of rice bran and canola oil in mineral oil. Inconel probe of 12.5mm diameter and 60mm height, instrumented with thermocouples were used to characterize quenchants. The probe was heated to 850°C and quenched in the oil medium. The cooling curves at different locations in the probe were used to study wetting kinematics. Inverse modelling technique was used to estimate spatially dependent metal-quenchant interfacial heat flux. It was found that the vegetable oils exhibited very short vapour blanket stage compared to mineral oil and blends. Faster wetting kinematics obtained with blends resulted in uniform heat transfer compared to that of mineral oil. The temperature distribution in the probe quenched in vegetable oils and blends was more uniform compared to that in mineral oil. It is expected that the parts quenched in vegetable oils and blends would lead to better hardness distribution compared to mineral oils.


2020 ◽  
Vol 851 ◽  
pp. 164-171 ◽  
Author(s):  
Aman Santoso ◽  
Abdurrohman ◽  
Anugrah Ricky Wijaya ◽  
Dedek Sukarianingsih ◽  
Sumari ◽  
...  

Vegetable oil is one of rice bran components. As triglycerides, vegetable oil can be converted to fatty acid and alkyl esters for further treatments. Synthesis of alkyl ester oil can be carried out by esterification or transesterification reaction, depending on the quality of the oil and the catalyst. The purposes of this study are 1) Rice bran oil isolation, 2) Oil esterification 3) Characterization and identification of the methyl ester that compose rice bran oil. The stages in this research are 1) Extraction of rice bran oil, 2) Synthesis of methyl ester from rice bran through esterification reaction, 3) Methyl ester characterization of rice bran oil and its potential test as biodiesel included determination of density, viscosity, refractive index, and acid number test, 4) The identification of synthesized methyl esters composition using GC-MS. The results showed that rice bran oil has a yield of 18.09%. Synthesis of methyl esters from rice bran oil through the esterification reaction with a catalyst acid yields 72.37%. The characters of the synthesized methyl ester are on the range of biodiesel quality standards, namely, the density is 0.850 g/mL, viscosity is 4.73 cSt, a refractive index is 1.45871, and an acid number is 0.76 g KOH/g methyl ester, therefore it is claimed that the synthesized methyl esters have the potential as biodiesel. The GC-MS result showed the presence of compounds methyl tetradecanoate (0.38%), methyl hexadecanoate (40.67%), methyl 9-octadecenoate (53.68%), methyl octadecanoate (5.02%), and methyl eicosanoate (0.14%).


2021 ◽  
Author(s):  
R. Mohan Kumar ◽  
Yamanura . ◽  
B. Boraiah

Edible oil is an integral part of everyday cooking, due to remarkable gain in vegetable oil consumption in India over the past few decades. Accomplishing edible oil requirement of the ever-growing population is a formidable task before the country. On the contrary, annual compound growth rate of major edible oilseeds in India is declining. This phenomenal disparity in demand and supply of vegetable oil in the country is tending to bother through profuse investment on overseas purchase. At this point of time, in order to meet on-growing demand of edible oil, rice bran oil can be the available option before the country. India being the major producer of rice, yields significant amount of bran which contain upto 24% edible grade superior quality vegetable oil. It essentially contains 48.48% oleic acid, 35.26% linoleic acid, 14.54% palmitic acid, 8.15% free fatty acid besides contain good number of antioxidants such as tocopherols, tocotrienols and oryzanol. Therefore, rice bran oil became the integral part of oil market in India and abroad. Inspite of its benefits, it has not been fully exploited. If its potentiality is harnessed completely, rice bran oil could emerge as silver lining of Indian edible oil economy.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2795
Author(s):  
Thammaporn Junsai ◽  
Saranya Poapolathep ◽  
Samak Sutjarit ◽  
Mario Giorgi ◽  
Zhaowei Zhang ◽  
...  

The prevalence of mycotoxins is often increased by the climatic conditions prevailing in tropical regions. Reports have revealed the contamination of mycotoxins in some types of vegetable oil. However, vegetable oil is one of the essential ingredients used in food preparation. Thus, this study determined the occurrence of multi-mycotoxins in six types of vegetable oils commercially available in Thailand to assess the consumer health risk. In total, 300 vegetable oil samples (olive oil, palm oil, soybean oil, corn oil, sunflower oil, and rice bran oil) collected from various markets in Thailand were analyzed for the presence of nine mycotoxins, namely, aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2), beauvericin (BEA), ochratoxin A (OTA), zearalenone (ZEA), fumonisin B1 (FB1), and fumonisin B2 (FB2) using a quick, easy, cheap, effective, rugged, and safe (QuEChERS)-based procedure and a triple quadrupole mass spectrometer equipped with an electrospray ionization source. The incidences of mycotoxin contamination varied among the different types of oil samples. AFB1, AFB2, ZEA, FB1, and FB2 were most frequently found in contaminated samples. AFB2, BEA, ZEA, FB1, and FB2 contaminated olive oil samples, whereas AFB1, AFB2, AFG2, and OTA contaminated palm oil samples. AFB1, AFB2, and ZEA were found in soybean oils, whereas ZEA, FB1, and FB2 contaminated corn oil samples. AFB1 and AFG1 contaminated sunflower oil samples, whereas AFB1, AFB2, AFG1, and OTA were detected in rice bran oil samples. However, the contamination levels of the analyzed mycotoxins were below the regulatory limits.


2008 ◽  
Vol 12 (2) ◽  
pp. 159-169 ◽  
Author(s):  
Janahiraman Krishnakumar ◽  
Karuppannan Venkatachalapathy ◽  
Sellappan Elancheliyan

Biodiesel, a promising substitute as an alternative fuel has gained significant attention due to the finite nature of fossil energy sources and does not produce sulfur oxides and minimize the soot particulate in comparison with the existing one from petroleum diesel. The utilization of liquid fuels such as biodiesel produced from vegetable oil by transesterification process represents one of the most promising options for the use of conventional fossil fuels. In the first step of this experimental research, edible rice bran oil used as test material and converted into methyl ester and non-edible jatropha vegetable oil is converted into jatropha oil methyl ester, which are known as biodiesel and they are prepared in the presence of homogeneous acid catalyst and optimized their operating parameters like reaction temperature, quantity of alcohol and the catalyst requirement, stirring rate and time of esterification. In the second step, the physical properties such as density, flash point, kinematic viscosity, cloud point, and pour point were found out for the above vegetable oils and their methyl esters. The same characteristics study was also carried out for the diesel fuel for obtaining the baseline data for analysis. The values obtained from the rice bran oil methyl ester and jatropha oil methyl ester are closely matched with the values of conventional diesel and it can be used in the existing diesel engine without any hardware modification. In the third step the storage characteristics of biodiesel are also studied. .


Sign in / Sign up

Export Citation Format

Share Document