scholarly journals Digital simulation of physical processes in vehicles engine power units

2018 ◽  
Vol 44 ◽  
pp. 00038 ◽  
Author(s):  
Sergey Hoodorozhkov ◽  
Andrey Krasilnikov ◽  
Evgeney Zakhlebayev

This article studies the issues of digital simulation of physical operating processes in vehicles transmission. Simulation of dynamic processes is carried out in power transmissions at the design stage. The procedure for using the digital packages such as MATLab – Simulink and Simscape was considered for the numerical simulation of dynamic processes in mechanical systems based on the example of the theoretical calculation of K-744 tractor transmission dynamics. A digital model of K-744 tractor transmission is constructed, its calculation scheme is given, the initial characteristics are determined. A digital model of the tractor engine was created by means of the Simulink package. A nature of change in tractor engine torqueis determined by it. The calculated analysis of normal transmission frequencies is performed. Forced torsional vibrations are calculated in the tractor change gearbox generated by the vehicle engine operation. The conditions of resonance in the transmission are analyzed. The unfavorable modes of joint operation of the engine and the gearbox are determined for K-744 tractor.

2021 ◽  
Vol 13 (1) ◽  
pp. 111-117
Author(s):  
Mikhail Podrigalo ◽  
◽  
Volodymyr Krasnokutskyi ◽  
Vitaliy Kashkanov ◽  
Olexander Tkachenko ◽  
...  

Aerodynamic characteristics have a major impact on the energy efficiency and traction and speed properties of the vehicle. In this article, based on previous studies of the aerodynamic characteristics of various car models, we propose an improved method for selecting engine and transmission parameters at the design stage. The aim of the study is to improve the dynamic properties of the car by improving the method of selecting the main parameters of the engine-transmission unit by refining the calculation of aerodynamic drag. To achieve it, the following tasks must be solved: to specify the method of selecting the maximum effective engine power; to specify a technique of definition of the maximum constructive speed of the car; to develop a technique for selecting gear ratios. The aerodynamic resistance to the movement of the vehicle is determined by the frontal coefficient of the specified resistance, the density of the air, the area of the frontal resistance and the speed of the vehicle. It is known from classical works on the aerodynamics of a car that in the range of vehicle speeds from 20 m / s to 80 m / s, taking the law of squares when assessing the force of air resistance, it is necessary to change the coefficient of frontal aerodynamic drag depending on the speed of the car. However, when carrying out calculations, this coefficient is taken constant, which leads to obtaining large values of the air resistance force at high speeds and lower at low speeds. There are two possible ways to improve the dynamic properties and energy efficiency of the car during its modernization (increasing the maximum design speed of the car by reducing the gear ratio in higher gear; reducing the maximum efficiency of the engine while maintaining the previous gear ratio in higher gear). As a result of the study, the method of selection (maximum effective engine power; maximum design speed of the car; gear ratios) at the design stage of the parameters of the motor-transmission unit of the car has been improved.


2019 ◽  
Vol 178 (3) ◽  
pp. 99-105
Author(s):  
Monika ANDRYCH-ZALEWSKA ◽  
Zdzisław CHŁOPEK ◽  
Jerzy MERKISZ ◽  
Jacek PIELECHA

The article presents the exhaust emission results from a diesel engine in dynamic states of engine operation in the driving tests: NEDC (New European Driving Cycle) and Malta test, developed at the Poznan University of Technology. The NEDC and Malta tests were carried out as simulations on the engine test bench mimicking the driving tests conditions. The test results of the emission of carbon monoxide, hydrocarbons and nitrogen oxides obtained in each of the tests were presented. The dynamic states have been classified de-pending on the time derivative value of the torque and engine rotational speed. Both the positive and negative as well as zero time deriv-ative values of torque and rotational speed were considered. Therefore, overall six types of dynamic states were analyzed. A high sensi-tivity of exhaust emission to various types of dynamic states was found. The exhaust emission sensitivity to dynamic states in the Malta test was found to be higher than for the NEDC test, although these tests have similar properties (average rotational speed and average torque). This is due to the fact that the NEDC test is created on the basis of the similarity of zero-dimensional characteristics of the cars speed characteristic, whereas the Malta test was designed in accordance with the principle of faithful representation in the time domain of the NEDC speed curve.


Author(s):  
Alexandr N. Arkhipov ◽  
Yury A. Ravikovich ◽  
Anton A. Matushkin ◽  
Dmitry P. Kholobtsev

Abstract The regional aircraft with a turbofan gas turbine engine, created in Russia, is successfully operated in the world market. Further increase of the life and reduction of the cost of the life cycle are necessary to ensure the competitive advantages of the engine. One of the units limiting the engine life is the compressor rotor. The cyclic life of the rotor depends on many factors: the stress-strain state in critical zones, the life of the material under low-cycle loading, the regime of engine operation, production deviations (within tolerances), etc. In order to verify the influence of geometry deviations, the calculations of the model with nominal dimensions and the model with the most unfavorable geometric dimensions (worst cases) have been carried out. The obtained influence coefficients for geometric and weight tolerances are then used for probabilistic modeling of stresses in the critical zone. Rotor speed and gas loads on the blades for different flight missions and engine wear are determined from the corresponding aerodynamic calculations taking into account the actual flight cycles (takeoff, reduction, reverse) and are also used for stress recalculations. The subsequent calculation of the rotor cyclic life and the resource assessment is carried out taking into account the spread of the material low-cycle fatigue by probabilistic modeling of the rotor geometry and weight loads. A preliminary assessment of the coefficients of tolerances influence on stress in the critical zone can be used to select the optimal (in terms of life) tolerances at the design stage. Taking into account the actual geometric and weight parameters can allow estimating the stress and expected life of each manufactured rotor.


2018 ◽  
Vol 7 (4.3) ◽  
pp. 130 ◽  
Author(s):  
Hayder Abed Dhahad ◽  
Wissam Hameed Alawee ◽  
Andrii Marchenko ◽  
Dmytro Klets ◽  
Oleg Akimov

A method for estimating the power characteristics of the car engine in various driving regimes is proposed. It is determined that the volume of the free power (engine power reserve) allows the driver to implement the turning parameters and the time of its completion, which are set by the steering parameters, position and the speed of the steering wheels rotation. The engine power reserve is necessary to provide the required maneuverability indicators. The engine power during maneuvering is spent on overcoming the resistance to movement and on providing the impact controlled by the maneuver. The first component of the engine power can be called connected, and the second one can be called the free one or a controlled component. The received analytical expressions allow carrying out at the design stage a rational choice of capacity of the engine by the condition of maintenance of demanded properties of maneuverability. The developed method for constructing the refined acceleration characteristics of the engine makes it possible to determine the dynamic capabilities of the car, taking into account its design features and operating conditions. 


Author(s):  
Renyou Yang ◽  
Gerasimos Theotokatos ◽  
Dracos Vassalos

This study aims at the parametric investigation of the gas injection system settings of a large marine two-stroke dual fuel engine by using a developed and customized CFD method in the ANSYS Fluent software. The investigated engine injection system parameters include the gas injection timing, the gas injection duration, the gas injector lateral angle, and the gas injector holes number. Based on the comparison of the predicted performance parameters for the closed-cycle processes, the results indicate that the gas injector lateral angle is the most significant parameter that affects the engine power as well as the NO and CO2 emissions. For satisfying the contradictory objectives of retaining the engine power and reducing the NO and CO2 emissions, appropriate design settings for the gas injection are recommended for the investigated engine operation in the gas mode at 75% load.


2014 ◽  
Vol 663 ◽  
pp. 426-430
Author(s):  
C.L. Hoo ◽  
Mohd Zaki Nuawi ◽  
S.M. Haris ◽  
S. Abdullah ◽  
Ahmad Rasdan Ismail

The Fuel injector is an important component in a vehicle engine for determining the performance of an engine. It is believed that, by knowing the current state of the injector, one can take any prior safety measure and ensuring the optimal performance of the engine. However, it is very difficult to study and analyse the fuel injection system in real time during the operation of the vehicle. A study was conducted in developing a method to monitor the fuel injector using the strain signal generated from the strain gauge sensors installed on the fuel injector. This method is practically implementable and can be used on the actual operation of the engine. A research rig was developed in order to visualise the behaviour of the injector at any instant by obtaining the three key parameters from the strain gage sensors which are the pulse width (ms), frequency (Hz) and pressure (bar). All data obtained from this experiment will be analysed using the Matlab software, where the I-kaz (Z∞) will be applied as the main method to clearly visualize the operation of the machine. The result shows that for the same pulse width and pressure, the series have the same pattern for I-kaz coefficient. They have a consistent trend compared to the Skewness and Kurtosis parameters. This method serves to predict and describe the behaviour of the fuel injector to ease the monitoring task at any instant throughout the engine operation.


Author(s):  
Alexander N. Arkhipov ◽  
Vladimir V. Karaban ◽  
Igor V. Putchkov ◽  
Guenter Filkorn ◽  
Andreas Kieninger

The evaluation of the blading clearance at the design stage is important for heavy duty gas turbine efficiency. The minimum clearance value at base load is limited by the pinch point clearance during startup and/or shutdown. Therefore, transient analysis is necessary for different operating conditions. 3D transient analysis of a whole engine is labor-intensive; however 2D axisymmetric analysis does not allow consideration of different 3D effects (e.g. twisting, bending, ovality, rotor alignment). In order to overcome these cost and time limitations, the combination of 2D, axisymmetric, whole-engine model results and the scaled deflections caused by different 3D effects is used for the axial and radial clearance engineering assessment during engine operation. The basic rotor and stator closures are taken from the transient analysis using a 2D finite element (FE) model composed of axisymmetric solid and plane stress elements. To take into account 3D effects of airfoil twisting and bending, the 3D FE displacements of the blade are included in the clearance evaluation process. The relative displacements of airfoil tip and reference point at the blade or vane hub are taken from 3D steady-state FE analyses. Then the steady-state displacements of the airfoils are scaled for transient conditions using the proposed technique. Different 3D rotor / stator effects (cold-build clearances and their tolerances, rotor position with respect to stator after assembly, casing bending, deformations of compressor and turbine vane carrier inducing of casing ovalization, exhaust gas housing movements, movements of the rotor in bearings and CVC and TVC support, etc.) are also included as a contributor to the clearances. The results of the calculations are analyzed and compared with good agreements to the clearances measured in engine testing under real operation conditions. The proposed methodology allows assessing the operating clearances between the stator and rotor during the design phase. Optimization of the running clearance is one key measure to upgrade and improve the engine performance during operating experience.


Transport ◽  
2008 ◽  
Vol 23 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Antanas Juostas ◽  
Algirdas Janulevičius

Article analyzes tractor working and its engine conditions from economical point of view. Overview of tractor wheel slippage reliance on the traction force and weight utilization coefficient is given. Tractor maximum driving force according to road and field conditions, and driving speed are submitted. Literature and theoretical investigation analysis is done, where interaction between tractor wheels made‐up driving force and grip is analysed. Driving speed and driving force dependence on rolling resistance and total aggregate weight using nominal power is described. In the present experimental research reduction in fuel consumption of tractor transport aggregate by reducing engine speed and by keeping the same work speed, was determined.


2013 ◽  
Vol 33 (4) ◽  
pp. 758-763 ◽  
Author(s):  
Leonardo de A. Monteiro ◽  
Daniel Albiero ◽  
Kleber P. Lanças ◽  
André V. Bueno ◽  
Fabricio C. Masiero

The tire inflation pressure, among other factors, determines the efficiency in which a tractor can exert traction. It was studied the effect of using two tire inflation pressures, 110.4 kPa in the front and rear wheels, 124.2 kPa in the front wheel and 138 kPa in the rear wheels, the energetic efficiency of an agricultural tractor of 147 kW of engine power, in the displacement speed of 6.0 km.h-1, on track with firm surface, with the tractor engine speed of 2000 rpm. For each condition of the tire pressure, the tested tractor was subjected to constant forces in the drawbar of 45 kN and 50 kN, covering 30 meters. It was used a randomized complete block with a 2x2 factorial arrangement (tire pressure and drawbar power) with four replications, totaling 16 experimental units. Data were subjected to analysis of variance, using the Tukey test at 5% probability for comparison averages. The lowest hourly and specific fuel consumption, the lowest slippage of the wheelsets and the highest efficiency in the drawbar was obtained with the tire inflation pressure of 110.4 kPa in the front and rear tires of the tractor, highlighting that lower pressures improve energetic and operational performance of the tractor.


Sign in / Sign up

Export Citation Format

Share Document