scholarly journals Analysis of Panax ginseng miRNAs and Their Target Prediction Based on High-Throughput Sequencing

Planta Medica ◽  
2019 ◽  
Vol 85 (14/15) ◽  
pp. 1168-1176
Author(s):  
Yingfang Wang ◽  
Mengyuan Peng ◽  
Yanlin Chen ◽  
Wenjuan Wang ◽  
Zhihua He ◽  
...  

Abstract Panax ginseng has been widely and effectively used as medicine for thousands of years. However, only limited studies have been conducted to date on ginseng miRNAs. In the present study, we collected 3 ginseng samples from the Changbai Mountain in China. Small RNA libraries were constructed and sequenced on the Illumina HiSeq platform. Sequencing analyses identified 3798 miRNAs, including 298 known miRNAs and 3500 potentially novel miRNAs. The miR166, miR159, and miR396 families were among the most highly expressed miRNAs in all libraries. The results of miRNA expression analyses were validated by qRT-PCR. Target gene prediction through computational and pathway annotation analyses revealed that the primary pathways were related to plant development, including metabolic processes and single-organism processes. It has been reported that plant miRNAs might be one of the hidden bioactive ingredients in medicinal plants. Based on the combined use of RNAhybrid, Miranda, and TargetScan software, a total of 50,992 potential human genes were predicted as the putative targets of 2868 miRNAs. Interestingly, the enriched KEGG pathways were associated with some human diseases, especially cancer, immune system diseases, and neurological disorders, and this could support the clinical use of ginseng. However, the human targets of ginseng miRNAs should be confirmed by further experimental validation. Our results provided valuable insight into ginseng miRNAs and the putative roles of these miRNAs.

MicroRNA ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. 68-75 ◽  
Author(s):  
Jeyalakshmi Kandhavelu ◽  
Kumar Subramanian ◽  
Amber Khan ◽  
Aadilah Omar ◽  
Paul Ruff ◽  
...  

Background:Globally, colorectal cancer (CRC) is the third most common cancer in women and the fourth most common cancer in men. Dysregulation of small non-coding miRNAs have been correlated with colon cancer progression. Since there are increasing reports of candidate miRNAs as potential biomarkers for CRC, this makes it important to explore common miRNA biomarkers for colon cancer. As computational prediction of miRNA targets is a critical initial step in identifying miRNA: mRNA target interactions for validation, we aim here to construct a potential miRNA network and its gene targets for colon cancer from previously reported candidate miRNAs, inclusive of 10 up- and 9 down-regulated miRNAs from tissues; and 10 circulatory miRNAs. </P><P> Methods: The gene targets were predicted using DIANA-microT-CDS and TarBaseV7.0 databases. Each miRNA and its targets were analyzed further for colon cancer hotspot genes, whereupon DAVID analysis and mirPath were used for KEGG pathway analysis.Results:We have predicted 874 and 157 gene targets for tissue and serum specific miRNA candidates, respectively. The enrichment of miRNA revealed that particularly hsa-miR-424-5p, hsa-miR-96-5p, hsa-miR-1290, hsa-miR-224, hsa-miR-133a and has-miR-363-3p present possible targets for colon cancer hallmark genes, including BRAF, KRAS, EGFR, APC, amongst others. DAVID analysis of miRNA and associated gene targets revealed the KEGG pathways most related to cancer and colon cancer. Similar results were observed in mirPath analysis. A new insight gained in the colon cancer network pathway was the association of hsa-mir-133a and hsa-mir-96-5p with the PI3K-AKT signaling pathway. In the present study, target prediction shows that while hsa-mir-424-5p has an association with mostly 10 colon cancer hallmark genes, only their associations with MAP2 and CCND1 have been experimentally validated.These miRNAs and their targets require further evaluation for a better understanding of their associations, ultimately with the potential to develop novel therapeutic targets.


2021 ◽  
Vol 99 (2) ◽  
Author(s):  
Yuhua Fu ◽  
Pengyu Fan ◽  
Lu Wang ◽  
Ziqiang Shu ◽  
Shilin Zhu ◽  
...  

Abstract Despite the broad variety of available microRNA (miRNA) research tools and methods, their application to the identification, annotation, and target prediction of miRNAs in nonmodel organisms is still limited. In this study, we collected nearly all public sRNA-seq data to improve the annotation for known miRNAs and identify novel miRNAs that have not been annotated in pigs (Sus scrofa). We newly annotated 210 mature sequences in known miRNAs and found that 43 of the known miRNA precursors were problematic due to redundant/missing annotations or incorrect sequences. We also predicted 811 novel miRNAs with high confidence, which was twice the current number of known miRNAs for pigs in miRBase. In addition, we proposed a correlation-based strategy to predict target genes for miRNAs by using a large amount of sRNA-seq and RNA-seq data. We found that the correlation-based strategy provided additional evidence of expression compared with traditional target prediction methods. The correlation-based strategy also identified the regulatory pairs that were controlled by nonbinding sites with a particular pattern, which provided abundant complementarity for studying the mechanism of miRNAs that regulate gene expression. In summary, our study improved the annotation of known miRNAs, identified a large number of novel miRNAs, and predicted target genes for all pig miRNAs by using massive public data. This large data-based strategy is also applicable for other nonmodel organisms with incomplete annotation information.


2021 ◽  
Vol 16 (5) ◽  
pp. 1934578X2110167
Author(s):  
Xing-Pan Wu ◽  
Tian-Shun Wang ◽  
Zi-Xin Yuan ◽  
Yan-Fang Yang ◽  
He-Zhen Wu

Objective To explore the anti-COVID-19 active components and mechanism of Compound Houttuynia mixture by using network pharmacology and molecular docking. Methods First, the main chemical components of Compound Houttuynia mixture were obtained by using the TCMSP database and referring to relevant chemical composition literature. The components were screened for OB ≥30% and DL ≥0.18 as the threshold values. Then Swiss Target Prediction database was used to predict the target of the active components and map the targets of COVID-19 obtained through GeneCards database to obtain the gene pool of the potential target of COVID-19 resistance of the active components of Compound Houttuynia mixture. Next, DAVID database was used for GO enrichment and KEGG pathway annotation of targets function. Cytoscape 3.8.0 software was used to construct a “components-targets-pathways” network. Then String database was used to construct a “protein-protein interaction” network. Finally, the core targets, SARS-COV-2 3 Cl, ACE2 and the core active components of Compound Houttuyna Mixture were imported into the Discovery Studio 2016 Client database for molecular docking verification. Results Eighty-two active compounds, including Xylostosidine, Arctiin, ZINC12153652 and ZINC338038, were screened from Compound Houttuyniae mixture. The key targets involved 128 targets, including MAPK1, MAPK3, MAPK8, MAPK14, TP53, TNF, and IL6. The HIF-1 signaling, VEGF signaling, TNF signaling and another 127 signaling pathways associated with COVID-19 were affected ( P < 0.05). From the results of molecular docking, the binding ability between the selected active components and the core targets was strong. Conclusion Through the combination of network pharmacology and molecular docking technology, this study revealed that the therapeutic effect of Compound Houttuynia mixture on COVID-19 was realized through multiple components, multiple targets and multiple pathways, which provided a certain scientific basis of the clinical application of Compound Houttuynia mixture.


2014 ◽  
Author(s):  
Fan Gao ◽  
Kai Wang

Background As one of the genetic mechanisms for adaptive immunity, V(D)J recombination generates an enormous repertoire of T-cell receptors (TCRs). With the development of high-throughput sequencing techniques, systematic exploration of V(D)J recombination becomes possible. Multiplex PCR method has been previously developed to assay immune repertoire, however the usage of primer pools has inherent bias in target amplification. In our study, we developed a ligation-anchored PCR method to unbiasedly amplify the repertoire. Results By utilizing a universal primer paired with a single primer targeting the conserved constant region, we amplified TCR-beta (TRB) variable regions from total RNA extracted from blood. Next-generation sequencing libraries were then prepared for Illumina HiSeq 2500 sequencer, which provided 151 bp read length to cover the entire V(D)J recombination region. We evaluated this approach on blood samples from patients with malignant and benign meningiomas. Mapping of sequencing data showed 64% to 91% of mapped TCRV-containing reads belong to TRB subtype. An increased usage of TRBV29-1 was observed in malignant meningiomas. Also distinct signatures were identified from CDR3 sequence logos, with predominant subset as 42 nt for benign and 45 nt for malignant samples, respectively. Conclusions In summary, we report an integrative approach to monitor immune repertoire in a systematic manner.


2021 ◽  
Vol 8 ◽  
Author(s):  
Wenxia Wang ◽  
Songlin Huang ◽  
Liangliang Yang ◽  
Guogang Zhang

There are many and diverse intestinal microbiota, and they are closely related to various physiological functions of the body. They directly participate in the host's food digestion, nutrient absorption, energy metabolism, immune response, and many other physiological activities and are also related to the occurrence of many diseases. The intestinal microbiota are extremely important for maintaining normal physical health. In order to explore the composition and differences of the intestinal microbiota of whooper swans in different wintering areas, we collected fecal samples of whooper swans in Sanmenxia, Henan, and Rongcheng, Shandong, and we used the Illumina HiSeq platform to perform high-throughput sequencing of bacterial 16S rRNA genes. Comparison between Sanmenxia and Rongcheng showed no significant differences in ACE, Chao 1, Simpson, and Shannon indices (p &gt; 0.05). Beta diversity results showed significant differences in bacterial communities between two groups [analysis of similarity (ANOSIM): R = 0.80, p = 0.011]. Linear discriminant analysis effect size (LEfSe) analysis showed that at the phylum level, the relative abundance of Actinobacteria was significantly higher in Sanmenxia whooper swans than Rongcheng whooper swans. At the genus level, the amount of Psychrobacter and Carnobacterium in Sanmenxia was significantly higher in Rongcheng, while the relative abundance Catellicoccus and Lactobacillus was significantly higher in Rongcheng than in Sanmenxia. This study analyzed the composition, characteristics, and differences of the intestinal microbiota of the whooper swans in different wintering environments and provided theoretical support for further exploring the relationship between the intestinal microbiota of the whooper swans and the external environment. And it played an important role in the overwintering physiology and ecology, population management, and epidemic prevention and control of whooper swans.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254808
Author(s):  
Weiwei Wang ◽  
Fengtao Zhang ◽  
Jia Cui ◽  
Di Chen ◽  
Zhen Liu ◽  
...  

MicroRNA-like small RNAs (milRNAs) and their regulatory roles in the interaction between plant and fungus have recently aroused keen interest of plant pathologists. Trichoderma spp., one of the widespread biocontrol fungi, can promote plant growth and induce plant disease resistance. To investigate milRNAs potentially involved in the interaction between Trichoderma and tomato roots, a small RNA (sRNA) library expressed during the interaction of T. asperellum DQ-1 and tomato roots was constructed and sequenced using the Illumina HiSeqTM 2500 sequencing platform. From 13,464,142 sRNA reads, we identified 21 milRNA candidates that were similar to other known microRNAs in the miRBase database and 22 novel milRNA candidates that possessed a stable microRNA precursor hairpin structure. Among them, three milRNA candidates showed different expression level in the interaction according to the result of stem-loop RT-PCR indicating that these milRNAs may play a distinct regulatory role in the interaction between Trichoderma and tomato roots. The potential transboundary milRNAs from T. asperellum and their target genes in tomato were predicted by bioinformatics analysis. The results revealed that several interesting proteins involved in plant growth and development, disease resistance, seed maturation, and osmotic stress signal transduction might be regulated by the transboundary milRNAs. To our knowledge, this is the first report of milRNAs taking part in the process of interaction of T. asperellum and tomato roots and associated with plant promotion and disease resistance. The results might be useful to unravel the mechanism of interaction between Trichoderma and tomato.


2019 ◽  
Vol 82 (10) ◽  
pp. 1775-1782 ◽  
Author(s):  
XUEMEI LUO ◽  
HONGXIA LI ◽  
DAN JIANG ◽  
JIEQIN MENG ◽  
FAN ZHANG ◽  
...  

ABSTRACT Coix (Coix lacryma-jobi) seeds are susceptible to fungal infections, making their surface fungi complex and diverse. Some fungi can produce mycotoxins under suitable conditions, and fungal growth is closely related to the production of mycotoxins. In this study, the surface fungi of coix seed were identified by Illumina HiSeq high-throughput sequencing. Simultaneously, the fungi cultured by the plate method were identified by microscopy and DNA barcoding; finally, the species of fungi were identified accurately and reliably by combining three methods. The aqueous extract of coix seed was cocultured with Aspergillus flavus spores, and the relationship between the aqueous extract and the growth of A. flavus was studied with the dry weight of mycelium as an indicator. The results showed that there were 89 genera and 96 species of fungi on coix seed, which were mainly distributed in Ascomycota (81.48%) and Basidiomycota (4.08%), and Xeromyces (8.50%), Gibberella (7.25%), and Aspergillus (4.74%) were the predominant genera. Four fungi were isolated from coix seed by plate culture and identified as Aspergillus fumigatus, A. flavus, Aspergillus oryzae, and Rhizopus oryzae by microscopy and DNA barcoding. The aqueous extract of coix seed at low concentrations has a promoting effect on the growth of A. flavus. When the concentration is 3.125%, the promotion effect is the most pronounced, and the promotion rate is 29.17%. These results reveal the diversity of fungi on the coix seed, which can provide a reference for the prevention and control of harmful fungi on coix seed.


Plant Disease ◽  
2020 ◽  
Vol 104 (2) ◽  
pp. 330-339 ◽  
Author(s):  
Yi Ming Guan ◽  
Jin Chao Deng ◽  
Ying Ying Ma ◽  
Yu Li ◽  
Ya Yu Zhang

The utility of traditional methods for detecting seed-borne fungi is limited by the fact some fungi are unculturable or difficult to isolate. The seed-borne pathogens affecting Panax ginseng cultivation have not been fully characterized. Seed-borne fungi can be identified based on the high-throughput sequencing of internal transcribed spacer (ITS) amplicons. A hierarchical clustering tree diagram analysis based on operational taxonomic units revealed a relationship between the seed-borne fungi and the region from which the seeds were collected. This study analyzed the fungal diversity on 30 ginseng seed samples from the main ginseng-producing areas of China. The 50 most abundant genera were identified including those responsible for ginseng diseases, Fusarium, Alternaria, Nectria, Coniothyrium, Verticillium, Phoma, and Rhizoctonia. Fusarium species, which are the primary causes of root rot, were detected in all seed samples. The results of a phylogenetic analysis indicated that the seed-borne fungal species originating from the same region were closely related. Fungi on ginseng seeds from eight different regions were divided into eight clades, suggesting they were correlated with the local storage medium. A total of 518 Fusarium isolates were obtained and 10 species identified, all of which can be detrimental to ginseng production. Pathogenicity tests proved that seed-borne Fusarium species can infect ginseng seedlings and 2-year-old ginseng root, with potentially adverse effects on ginseng yield and quality.


2020 ◽  
Vol 8 (1) ◽  
pp. 102 ◽  
Author(s):  
Tangcheng Li ◽  
Liying Yu ◽  
Bo Song ◽  
Yue Song ◽  
Ling Li ◽  
...  

Cataloging an accurate functional gene set for the Symbiodiniaceae species is crucial for addressing biological questions of dinoflagellate symbiosis with corals and other invertebrates. To improve the gene models of Fugacium kawagutii, we conducted high-throughput chromosome conformation capture (Hi-C) for the genome and Illumina combined with PacBio sequencing for the transcriptome to achieve a new genome assembly and gene prediction. A 0.937-Gbp assembly of F. kawagutii were obtained, with a N50 > 13 Mbp and the longest scaffold of 121 Mbp capped with telomere motif at both ends. Gene annotation produced 45,192 protein-coding genes, among which, 11,984 are new compared to previous versions of the genome. The newly identified genes are mainly enriched in 38 KEGG pathways including N-Glycan biosynthesis, mRNA surveillance pathway, cell cycle, autophagy, mitophagy, and fatty acid synthesis, which are important for symbiosis, nutrition, and reproduction. The newly identified genes also included those encoding O-methyltransferase (O-MT), 3-dehydroquinate synthase, homologous-pairing protein 2-like (HOP2) and meiosis protein 2 (MEI2), which function in mycosporine-like amino acids (MAAs) biosynthesis and sexual reproduction, respectively. The improved version of the gene set (Fugka_Geneset _V3) raised transcriptomic read mapping rate from 33% to 54% and BUSCO match from 29% to 55%. Further differential gene expression analysis yielded a set of stably expressed genes under variable trace metal conditions, of which 115 with annotated functions have recently been found to be stably expressed under three other conditions, thus further developing the “core gene set” of F. kawagutii. This improved genome will prove useful for future Symbiodiniaceae transcriptomic, gene structure, and gene expression studies, and the refined “core gene set” will be a valuable resource from which to develop reference genes for gene expression studies.


Sign in / Sign up

Export Citation Format

Share Document