Allometric Scaling of Force-velocity Test Output Among Pre-pubertal Basketball Players

Author(s):  
Diogo V. Martinho ◽  
Rafael Baptista ◽  
Anderson S. Teixeira ◽  
Joao P. Duarte ◽  
Joao Valente-dos-Santos ◽  
...  

AbstractBasketball is characterized by high-intensity episodes predominantly reliant on anaerobic metabolism. The force-velocity test enables individual determination of an optimal braking force and emerged as appropriate to estimate optimal peak power. It has rarely been used in youth basketball. This study aimed to examine the contribution of body size, composition, and biological maturation to interindividual variation in force-velocity test output among pre-pubertal basketball players. The sample consisted of 64 male participants (8.4–12.3 years). Stature, sitting height, body mass and two skinfolds were measured, and leg length estimated. Fat-free mass and lower limb volume were estimated from anthropometry. Age at peak height velocity was predicted from maturity offset. Optimal peak power was correlated with all body size descriptors (correlation: 0.541–0.700). Simple allometric models explained 30–47% of inter-individual variance, with fat-free mass being the best predictor of performance. Whole-body fat-free mass (as a surrogate for active muscle mass) plus the indicator of maturation emerged as the best proportional allometric model (53% explained variance). Even at pre-pubertal ages, the interpretation of the force-velocity test requires assessing the metabolically active component of body mass.

2003 ◽  
Vol 15 (4) ◽  
pp. 406-418 ◽  
Author(s):  
Amândio M.C. Santos ◽  
Neil Armstrong ◽  
Mark B. A. De Ste Croix ◽  
Peter Sharpe ◽  
Joanne R. Welsman

These studies used multilevel modelling to examine optimised peak power (PPopt) from a force velocity test over the age range 12–14 years. In the first study, body mass, stature, triceps and subscapular skinfold thicknesses of boys and girls, aged 12.3 ± 0.3 y at the onset of the study, were measured on four occasions at 6 monthly intervals. The analysis was founded on 146 PPopt determinations (79 from boys and 67 from girls). Body mass and stature were significant explanatory variables with sum of two skinfolds exerting an additional effect. No gender differences were evident but PPopt increased with age. In the second study, thigh muscle volume (TMV) was estimated using magnetic resonance imaging at test occasions two and four. The analysis, founded on a subsample of 67 PPopt determinations (39 from boys and 28 from girls), demonstrated TMV to be a significant additional explanatory variable alongside body mass and stature with neither age nor gender making a significant contribution to PPopt. Together the studies demonstrate the influence of body size and TMV on young people’s PPopt.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pantelis T. Nikolaidis ◽  
Beat Knechtle

Peak power of the Wingate anaerobic test (WAnT), either in W (Ppeak) or in W.kg–1 (rPpeak), has been widely used to evaluate the performance of soccer players; however, its relationship with force–velocity (F-v) test (e.g., whether these tests can be used interchangeably) has received little scientific attention so far. The aim of this work was to develop and validate a prediction equation of Ppeak and rPpeak from F-v characteristics in male soccer players. Participants were 158 adult male soccer players (sport experience 11.4 ± 4.5 years, mean ± standard deviation, approximately five weekly training units, age 22.6 ± 3.9 years, body mass 74.8 ± 7.8 kg, and height 178.3 ± 7.8 cm) who performed both WAnT and F-v test. An experimental (EXP, n = 79) and a control group (CON, n = 79) were used for development and validation, respectively, of the prediction equation of Ppeak and rPpeak from F-v test. In EXP, Ppeak correlated very largely with body mass (r = 0.787), fat-free mass (r = 0.765), largely with maximal power of F-v test (Pmax; r = 0.639), body mass index (r = 0.603), height (r = 0.558), moderately with theoretical maximal force (F0; r = 0.481), percentage of body fat (r = 0.471), fat mass (r = 0.443, p < 0.001); rPpeak correlated with rPmax (largely; r = 0.596, p < 0.001), theoretical maximal velocity (v0; moderately; r = 0.341, p = 0.002), F0 (small magnitude; r = 0.280, p = 0.012), BF (r = −0.230, p = 0.042), and fat mass (r = −0.242, p = 0.032). Ppeak in EXP could be predicted using the formula “44.251 + 7.431 × body mass (kg) + 0.576 × Pmax (W) – 19.512 × F0” (R = 0.912, R2 = 0.833, standard error of estimate (SEE) = 42.616), and rPpeak from “3.148 + 0.218 × rPmax (W.kg–1) + v0 (rpm)” (R = 0.765, R2 = 0.585, SEE = 0.514). Applying these formulas in CON, no bias was observed between the actual and the predicted Ppeak (mean difference 2.5 ± 49.8 W; 95% CI, −8.7, 13.6; p = 0.661) and rPpeak (mean difference 0.05 ± 0.71 W.kg–1; 95% CI, −0.11, 0.21, p = 0.525). These findings provided indirect estimates of Ppeak of the WAnT, especially useful in periods when this test should not be applied considering the fatigue it causes; in this context, the F-v test can be considered as an alternative of exercise testing for estimating the average Ppeak of a group of soccer players rather than for predicting individual scores when the interindividual variation of performance is small.


2007 ◽  
Vol 102 (6) ◽  
pp. 2142-2148 ◽  
Author(s):  
Sean Walsh ◽  
E. Jeffrey Metter ◽  
Luigi Ferrucci ◽  
Stephen M. Roth

Genetic variation in myostatin, a negative regulator of skeletal muscle, in cattle has shown remarkable influence on skeletal muscle, resulting in a double-muscled phenotype in certain breeds; however, DNA sequence variation within this gene in humans has not been consistently associated with skeletal muscle mass or strength. Follistatin and activin-type II receptor B ( ACVR2B) are two myostatin-related genes involved in the regulation and signaling of myostatin. We sought to identify associations between genetic variation and haplotype structure in both follistatin and ACVR2B with skeletal muscle-related phenotypes. Three hundred fifteen men and 278 women aged 19–90 yr from the Baltimore Longitudinal Study of Aging were genotyped to determine respective haplotype groupings (Hap Groups) based on HapMap data. Whole body soft tissue composition was measured by dual-energy X-ray absorptiometry. Quadriceps peak torque (strength) was measured using an isokinetic dynamometer. Women carriers of ACVR2B Hap Group 1 exhibited significantly less quadriceps muscle strength (shortening phase) than women homozygous for Hap Group 2 (109.2 ± 1.9 vs. 118.6 ± 4.1 N·m, 30°/s, respectively, P = 0.036). No significant association was observed in men. Male carriers of follistatin Hap Group 3 exhibited significantly less total leg fat-free mass than noncarriers (16.6 ± 0.3 vs. 17.5 ± 0.2 kg, respectively, P = 0.012). No significant associations between these haplotype groups were observed in women. These results indicate that haplotype structure at the ACVR2B and follistatin loci may contribute to interindividual variation in skeletal muscle mass and strength, although these data indicate sex-specific relationships.


2018 ◽  
Vol 61 (1) ◽  
pp. 53-62 ◽  
Author(s):  
Kenji Kuzuhara ◽  
Masashi Shibata ◽  
Junta Iguchi ◽  
Ryo Uchida

AbstractFunctional movement screen (FMS) has been used to establish normative data and determine potential injury risk for young adults and athletes, but there are few data in elementary school-age children. The purpose of this study was to establish fundamental values for the FMS in elementary school-age mini-basketball players. Secondary purposes were to examine relationships between functional movement patterns and age, peak height velocity (PHV), and body mass index (BMI), and to compare functional movement patterns between boys and girls and between individuals with and without a history of injury. The mean composite FMS score was 16.5 ± 2.2 (16.5 ± 2.4 for boys, 16.5 ± 1.7 for girls). The composite FMS score was positively correlated with age (r = .312) and negatively correlated with the BMI (r = − .371). However, the FMS score was not correlated with PHV or with PHV age. The FMS score was not different between boys and girls or between individuals who reported a previous injury and those who did not. However, boys in the mini-basketball teams performed better than girls on the trunk stability push-up and rotary stability tests. Age and the body mass index were significantly associated with better and poorer functional movement, respectively.


Author(s):  
Lilian Keila Barazetti ◽  
Pedro Rafael Varoni ◽  
Fernando de Souza Campos ◽  
Michelli Demarchi ◽  
Lucielle Baumann ◽  
...  

Abstract The aim of this study was to compare the characteristics of somatic maturation, anthropometric and physical performance (vertical jump and aerobic power) in young basketball players of different playing positions (under 13 years) and analyze these relationships using Peak Height Velocity (PHV) as a measure of somatic maturation. For this, 26 male athletes were evaluated. Anthropometric variables were: body mass, standing and sitting height, and length of lower limbs. Maturation was determined by age at PHV. Physical performance was determined by lower limb power (counter movement jump - CMJ) and aerobic power (Intermittent Recovery Test) tests. MANOVA reported significant differences (p<0.05) among playing positions regarding variables Maturity Offset, estimated PHV age, standing height, sitting height, estimated leg length, body mass and Yo-Yo IR1. In addition, it was identified that point guards reached estimated PHV at later age than their peers who act as small forwards and centers. Regarding CMJ, no significant differences were identified among playing positions, but in relation to aerobic power, point guards and small forwards presented higher performance. These findings confirm that maturation has great effect on growth and physical performance measures and the estimated PHV age is an applicable tool in young athletes, mainly aiding professionals in structuring the teaching-learning- training process in this age group.


2021 ◽  
Author(s):  
Karol Gryko ◽  
Jakub Grzegorz Adamczyk ◽  
Anna Kopiczko ◽  
Jorge Lorenzo Calvo ◽  
Alberto Lorenzo Calvo ◽  
...  

Abstract Background: The aims of the study were (i) to identify the physical fitness and basic anthropometric characteristics of Polish female basketball players aged 13 to 15 years, (ii) to show the effect of maturity timing on the performance in motor tests and basic body composition parameters, (iii) to identify the index that contributes most to the prediction of performance in the tests of speed, jumping ability, agility, and endurance. Methods: The sample included 925 female Polish players (U13-15). In part 1, maturity timing category distribution were examined within across age-groups. In part 2, the relationship between the anthropometric variables, physical fitness performance was assessed based on maturity timing categories (ANCOVA analysis). In part 3, backward stepwise multiple regression analyse quantified the relationship between maturity timing (group of PHV) and physical performance.Results: ANCOVA results (age, body height, and body mass as covariates) showed in the U13 female basketball players significantly higher sprinting (20m), jumping ability and endurance tests results of the PHV1 group.Better results was observed in U14 female players in PHV1 compared to PHV2 and PHV3 in 20m and jumping tests but opposite trend was observed for 5m sprint and endurance test (distance covered and VO2max). U15 basketball players from the PHV3 group were characterized by better results of jumping abilities, endurance, 10m and 20m sprint and agility (total, S4) tests. Maturity timing (10m), chronological age (5 m, 20 m, agility, SVJ, VJ, and VO2max tests), body height (10m), body mass (10m, 20m, VJ, VO2max), and the interaction between body mass and height (SVJ) were significant (adjusted R2 = 0.02-0.10; p < 0.001) predictors of motor skills. Conclusion: The results can help the coaches to personalize training programs and to adapt the training content to the biological age of the players.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Humberto M. Carvalho ◽  
Gerusa E. Milano ◽  
Wendell A. Lopes ◽  
António J. Figueiredo ◽  
Rosana B. Radominski ◽  
...  

The influence of body size and maturation on the responses in peak oxygen uptake (VO2) to a 12-week aerobic training and nutritional intervention in obese boys (; 10–16 years) was examined using multilevel allometric regressions. Anthropometry, sexual maturity status, peak VO2, and body composition were measured pre- and postintervention. Significant decrements for body mass, body mass indexz-score, and waist circumference and increments for stature, fat-free mass, and peak oxygen uptake were observed after intervention. Partitioning body size on peak VO2, the responses of the individuals to training were positive (11.8% to 12.7% for body mass; 7.6% to 8.1% for fat-free mass). Body mass and fat-free mass were found as significant explanatory variables, with an additional positive effect for chronological. The allometric coefficients () in the initial models were and for body mass and fat-free mass, respectively. The coefficients decreased when age was considered ( for body mass; for fat-free mass). Including maturity indicator in the models was not significant, thus the influence of variability in sexual maturity status in responses to exercise-based intervention in peak VO2may be mediated by the changes in body dimensions.


2021 ◽  
Vol 3 ◽  
Author(s):  
Sérgio Antunes Ramos ◽  
Luis Miguel Massuça ◽  
Anna Volossovitch ◽  
António Paulo Ferreira ◽  
Isabel Fragoso

The aims of the present study were: (i) to describe the structural and functional attributes of young male Portuguese basketball players aged 12–16 years and (ii) to generate normative data according to chronological age and years from peak height velocity. A total of 281 male Portuguese young basketball players between the ages of 12 and 16 years were assessed in this study. Chronological age, maturity parameters (maturity offset and predicted age at peak height velocity), morphological (body mass, height, and skinfolds and length), and fitness (sprint, change of direction ability, jump, and upper body strength) attributes were measured. Descriptive statistics were determined for the age and maturity status, and the 10th, 25th, 50th, 75th, and 90th percentiles were chosen as reference values. Descriptive and normative values of the players' morphological and fitness attributes, stratified by age and maturity status, are provided. The normative values of age at peak height velocity (category YAPHV = 0) showed that regional basketball players presented average values (50th percentile) of 169.8 cm for height, 173.3 cm for arm span, 55.6 kg for body mass, 3.34 s for the 20-m speed test, 10.31 s for the T-test, 4.75 m for the 2-kg medicine ball throw, 66.9 kg for the combined right and left handgrip strength, and 30.1 and 35.9 cm for jump height in the countermovement jump (CMJ) and CMJ with arm swing, respectively. In conclusion, these results may be helpful to quantify and control an athlete's performance over time and to adjust strength and conditioning programs to biological demands.


2021 ◽  
pp. 317-327
Author(s):  
Alejandro Pérez-Castilla ◽  
Amador García-Ramos ◽  
Danica Janicijevic ◽  
Sergio Miras-Moreno ◽  
Juan Carlos De la Cruz ◽  
...  

This study aimed to compare the between-session reliability of performance and asymmetry variables between unilateral and bilateral standing broad jumps (SBJ). Twenty-four amateur basketball players (12 males and females) completed two identical sessions which consisted of four unilateral SBJs (two with each leg) and two bilateral SBJs. Mean and peak values of force, velocity and power, and impulse were obtained separately for each leg using a dual force platform. Inter-limb asymmetries were computed using the standard percentage difference for the unilateral SBJ, and the bilateral asymmetry index-1 for the bilateral SBJ. All performance variables generally presented an acceptable absolute reliability for both SBJs (CV range = 3.65-9.81%) with some exceptions for mean force, mean power, and peak power obtained with both legs (CV range = 10.00-15.46%). Three out of 14 variables were obtained with higher reliability during the unilateral SBJ (CVratio ≥ 1.18), and 5 out of 14 during the bilateral SBJ (CVratio ≥ 1.27). Asymmetry variables always showed unacceptable reliability (ICCrange = -0.40 to 0.58), and slight to fair levels of agreement in their direction (Kappa range = -0.12 to 0.40) except for unilateral SBJ peak velocity [Kappa = 0.52] and bilateral SBJ peak power [Kappa = 0.51]) that showed moderate agreement for both SBJs. These results highlight that single-leg performance variables can be generally obtained with acceptable reliability regardless of the SBJ variant, but the reliability of the inter-limb asymmetries in the conditions examined in the present study is unacceptable to track individual changes in performance.


1998 ◽  
Vol 275 (5) ◽  
pp. E830-E834 ◽  
Author(s):  
Simon W. Coppack ◽  
Jeffrey F. Horowitz ◽  
Deanna S. Paramore ◽  
Philip E. Cryer ◽  
Henry D. Royal ◽  
...  

We evaluated whole body and regional (subcutaneous abdominal adipose tissue and forearm) norepinephrine (NE) kinetics in seven lean (body mass index 21.3 ± 0.5 kg/m2) and six upper body obese (body mass index 36.4 ± 0.4 kg/m2) women who were matched on fat-free mass. NE kinetics were determined by infusing [3H]NE and obtaining blood samples from a radial artery, a deep forearm vein draining mostly skeletal muscle, and an abdominal vein draining subcutaneous abdominal fat. Mean systemic NE spillover tended to be higher in obese (2.82 ± 0.49 nmol/min) than in lean (2.53 ± 0.40 nmol/min) subjects, but the differences were not statistically significant. Adipose tissue and forearm NE spillover rates into plasma were greater in lean (0.91 ± 0.08 pmol ⋅ 100 g tissue−1 ⋅ min−1and 1.01 ± 0.09 pmol ⋅ 100 ml tissue−1 ⋅ min−1, respectively) than in obese (0.26 ± 0.05 pmol ⋅ 100 g tissue−1 ⋅ min−1and 0.58 ± 0.11 pmol ⋅ 100 ml tissue−1 ⋅ min−1, respectively) subjects ( P < 0.01). These results demonstrate that adipose tissue is an active site for NE metabolism in humans. Adipose tissue NE spillover is considerably lower in obese than in lean women, which may contribute to the lower rate of lipolysis per kilogram of fat mass observed in obesity.


Sign in / Sign up

Export Citation Format

Share Document