Protective Effects of Astragaloside IV and Cycloastragenol in 6-hydroxydopamin (6-OHDA)-Induced Neurotoxicity in PC12 Cells

Planta Medica ◽  
2011 ◽  
Vol 77 (12) ◽  
Author(s):  
T Nesil ◽  
T Nesil ◽  
A Şendemir Ürkmez ◽  
E Bedir
2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Yunkyoung Lee ◽  
Hee-Sook Jun ◽  
Yoon Sin Oh

The extract of Psoralea corylifolia seeds (PCE) has been widely used as a herbal medicine because of its beneficial effect on human health. In this study, we investigated the protective effects and molecular mechanisms of PCE on palmitate- (PA-) induced toxicity in PC12 cells, a neuron-like cell line. PCE significantly increased cell viability in PA-treated PC12 cells and showed antiapoptotic effects, as evidenced by decreased expression of cleaved caspase-3, cleaved poly(ADP-ribose) polymerase, and bax protein as well as increased expression of bcl-2 protein. In addition, PCE treatment reduced PA-induced reactive oxygen species production and upregulated mRNA levels of antioxidant genes such as nuclear factor (erythroid-derived 2)-like 2 and heme oxygenase 1. Moreover, PCE treatment recovered the expression of autophagy marker genes such as beclin-1 and p62, which was decreased by PA treatment. Treatment with isopsoralen, one of the major components of PCE extract, also recovered the expression of autophagy marker genes and reduced PA-induced apoptosis. In conclusion, PCE exerts protective effects against lipotoxicity via its antioxidant function, and this effect is mediated by activation of autophagy. PCE might be a potential pharmacological agent to protect against neuronal cell injury caused by oxidative stress or lipotoxicity.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yan-Fang Xian ◽  
Zhi-Xiu Lin ◽  
Qing-Qiu Mao ◽  
Jian-Nan Chen ◽  
Zi-Ren Su ◽  
...  

The neurotoxicity of amyloid-β(Aβ) has been implicated as a critical cause of Alzheimer’s disease. Isorhynchophylline (IRN), an oxindole alkaloid isolated fromUncaria rhynchophylla,exerts neuroprotective effect againstAβ25–35-induced neurotoxicityin vitro. However, the exact mechanism for its neuroprotective effect is not well understood. The present study aimed to investigate the molecular mechanisms underlying the protective action of IRN againstAβ25–35-induced neurotoxicity in cultured rat pheochromocytoma (PC12) cells. Pretreatment with IRN significantly increased the cell viability, inhibited the release of lactate dehydrogenase and the extent of DNA fragmentation inAβ25–35-treated cells. IRN treatment was able to enhance the protein levels of phosphorylated Akt (p-Akt) and glycogen synthase kinase-3β(p-GSK-3β). Lithium chloride blockedAβ25–35-induced cellular apoptosis in a similar manner as IRN, suggesting that GSK-3βinhibition was involved in neuroprotective action of IRN. Pretreatment with LY294002 completely abolished the protective effects of IRN. Furthermore, IRN reversedAβ25–35-induced attenuation in the level of phosphorylated cyclic AMP response element binding protein (p-CREB) and the effect of IRN could be blocked by the PI3K inhibitor. These experimental findings unambiguously suggested that the protective effect of IRN againstAβ25–35-induced apoptosis in PC12 cells was associated with the enhancement of p-CREB expression via PI3K/Akt/GSK-3βsignaling pathway.


2002 ◽  
Vol 24 (2) ◽  
pp. 227-243 ◽  
Author(s):  
Jienny Lee ◽  
Myung-Sunny Kim ◽  
Channy Park ◽  
Yun-Sook Lim ◽  
In Lee ◽  
...  

2013 ◽  
Vol 346 (4) ◽  
pp. 300-307 ◽  
Author(s):  
Yahong Zhao ◽  
Yong Ling ◽  
Jing Zhao ◽  
Ying Yuan ◽  
Yibin Guo ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Dongdong Zhang ◽  
Zhe Wang ◽  
Chenxia Sheng ◽  
Weijun Peng ◽  
Shan Hui ◽  
...  

Icariin is a prenylated flavonol glycoside derived from the Chinese herbEpimedium sagittatumthat exerts a variety of pharmacological activities and shows promise in the treatment and prevention of Alzheimer’s disease. In this study, we investigated the neuroprotective effects of icariin against amyloid beta protein fragment 25–35 (Aβ25–35) induced neurotoxicity in cultured rat pheochromocytoma PC12 cells and explored potential underlying mechanisms. Our results showed that icariin dose-dependently increased cell viability and decreasedAβ25–35-induced apoptosis, as assessed by MTT assay and Annexin V/propidium iodide staining, respectively. Results of western blot analysis revealed that the selective phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 suppressed icariin-induced Akt phosphorylation, suggesting that the protective effects of icariin are associated with activation of the PI3K/Akt signaling pathway. LY294002 also blocked the icariin-induced downregulation of proapoptotic factors Bax and caspase-3 and upregulation of antiapoptotic factor Bcl-2 inAβ25–35-treated PC12 cells. These findings provide further evidence for the clinical efficacy of icariin in the treatment of Alzheimer’s disease.


2011 ◽  
Vol 26 (S2) ◽  
pp. 908-908
Author(s):  
H.R. Sadeghnia ◽  
S.H. Mousavi ◽  
Z. Tayarani-Najaran ◽  
M. Asghari

The serum/glucose deprivation (SGD)-induced cell death in cultured PC12 cells represents a useful in vitro model for the study of brain ischemia and neurodegenerative disorders.Nigella sativa L. and its active component, thymoquinone (TQ) have been known as a source of antioxidants. In the present study, the protective effects of N. sativa and TQ on cell viability and reactive oxygen species (ROS) production in cultured PC12 cells were investigated under SGD conditions. PC12 Cells were pretreated with different concentrations of N. sativa extract (15.62–250 μg/ml) and TQ (1.17–150 μM) for 2 h and then subjected to SGD for 6 or 18 h. Cell viability was quantitated by MTT assay. Intracellular ROS production was measured by flow cytometry using 2’,7’-dichlorofluorescin diacetate (DCF-DA) as a probe. SGD induced significant cells toxicity after 6, 18, or 24 h (p < 0.001). Pretreatment with N. sativa (15.62–250 μg/ml) and TQ (1.17–37.5 μM) reduced SGD-induced cytotoxicity in PC12 cells after 6 and 18 h. A significant increase in intracellular ROS production was seen following SGD (p < 0.001). N. sativa (250 μg/ml, p < 0.01) and TQ (2.34, 4.68, 9.37 μM, p < 0.01) pretreatment reversed the increased ROS production following ischemic insult. The experimental results suggest that N. sativa extract and TQ protects the PC12 cells against SGD-induced cytotoxicity via antioxidant mechanisms. Our findings might raise the possibility of potential therapeutic application of N. sativa extract and TQ for managing cerebral ischemic and neurodegenerative disorders.


2020 ◽  
Vol 23 (5) ◽  
pp. 523-534
Author(s):  
Soo Jung Choi ◽  
Chan Kyu Park ◽  
Dong-Hoon Shin

2019 ◽  
Vol 20 (8) ◽  
pp. 1865 ◽  
Author(s):  
Kim ◽  
Park ◽  
Kang ◽  
Park ◽  
Yoo ◽  
...  

The aim of this study was to investigate the availability of seeds, one of the byproducts of green tea, and evaluate the physiological activity of seed oil. The ameliorating effect of green tea seed oil (GTO) was evaluated on H2O2-induced PC12 cells and amyloid beta (Aβ)1–42-induced ICR mice. GTO showed improvement of cell viability and reduced reactive oxygen species (ROS) production in H2O2-induced PC12 cells by conducting the 2′,3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and 2′,7′-dichlorofluorescein diacetate (DCF-DA) analysis. Also, administration of GTO (50 and 100 mg/kg body weight) presented protective effects on behavioral and memory dysfunction by conducting Y-maze, passive avoidance, and Morris water maze tests in Aβ-induced ICR mice. GTO protected the antioxidant system by reducing malondialdehyde (MDA) levels, and by increasing superoxide dismutase (SOD) and reducing glutathione (GSH) contents. It significantly regulated the cholinergic system of acetylcholine (ACh) contents, acetylcholinesterase (AChE) activities, and AChE expression. Also, mitochondrial function was improved through the reduced production of ROS and damage of mitochondrial membrane potential (MMP) by regulating the Aβ-related c-Jun N-terminal kinase (JNK)/protein kinase B (Akt) and Akt/apoptosis pathways. This study suggested that GTO may have an ameliorating effect on cognitive dysfunction and neurotoxicity through various physiological activities.


Molecules ◽  
2019 ◽  
Vol 24 (5) ◽  
pp. 867 ◽  
Author(s):  
Hyun Park ◽  
Jong Kang ◽  
Myung Lee

1-O-Hexyl-2,3,5-trimethylhydroquinone (HTHQ) has previously been found to have effective anti-oxidant and anti-lipid-peroxidative activity. We aimed to elucidate whether HTHQ can prevent dopaminergic neuronal cell death by investigating the effect on l-DOPA-induced cytotoxicity in PC12 cells. HTHQ protected from both l-DOPA-induced cell death and superoxide dismutase activity reduction. When assessing the effect of HTHQ on oxidative stress-related signaling pathways, HTHQ inhibited l-DOPA-induced phosphorylation of sustained extracellular signal-regulated kinases (ERK1/2), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK1/2). HTHQ also normalized l-DOPA-reduced Bcl-2-associated death protein (Bad) phosphorylation and Bcl-2-associated X protein (Bax) expression, promoting cell survival. Taken together, HTHQ exhibits protective effects against l-DOPA-induced cell death through modulation of the ERK1/2-p38MAPK-JNK1/2-Bad-Bax signaling pathway in PC12 cells. These results suggest that HTHQ may show ameliorative effects against oxidative stress-induced dopaminergic neuronal cell death, although further studies in animal models of Parkinson’s disease are required to confirm this.


2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Peipei Wang ◽  
Mingyi Zhao ◽  
Zhiheng Chen ◽  
Guojiao Wu ◽  
Masayuki Fujino ◽  
...  

Neonatal hypoxic-ischemic encephalopathy (HIE) is a leading cause of death in neonates with no effective treatments. Recent advancements in hydrogen (H2) gas offer a promising therapeutic approach for ischemia reperfusion injury; however, the impact of this approach for HIE remains a subject of debate. We assessed the therapeutic effects of H2 gas on HIE and the underlying molecular mechanisms in a rat model of neonatal hypoxic-ischemic brain injury (HIBI). H2 inhalation significantly attenuated neuronal injury and effectively improved early neurological outcomes in neonatal HIBI rats as well as learning and memory in adults. This protective effect was associated with initiation time and duration of sustained H2 inhalation. Furthermore, H2 inhalation reduced the expression of Bcl-2-associated X protein (BAX) and caspase-3 while promoting the expression of Bcl-2, nuclear factor erythroid-2-related factor 2, and heme oxygenase-1 (HO-1). H2 activated extracellular signal-regulated kinase and c-Jun N-terminal protein kinase and dephosphorylated p38 mitogen-activated protein kinase (MAPK) in oxygen-glucose deprivation/reperfusion (OGD/R) nerve growth factor-differentiated PC12 cells. Inhibitors of MAPKs blocked H2-induced HO-1 expression. HO-1 small interfering RNA decreased the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and sirtuin 1 (SIRT1) and reversed the protectivity of H2 against OGD/R-induced cell death. These findings suggest that H2 augments cellular antioxidant defense capacity through activation of MAPK signaling pathways, leading to HO-1 expression and subsequent upregulation of PGC-1α and SIRT-1 expression. Thus, upregulation protects NGF-differentiated PC12 cells from OGD/R-induced oxidative cytotoxicity. In conclusion, H2 inhalation exerted protective effects on neonatal rats with HIBI. Early initiation and prolonged H2 inhalation had better protective effects on HIBI. These effects of H2 may be related to antioxidant, antiapoptotic, and anti-inflammatory responses. HO-1 plays an important role in H2-mediated protection through the MAPK/HO-1/PGC-1α pathway. Our results support further assessment of H2 as a potential therapeutic for neurological conditions in which oxidative stress and apoptosis are implicated.


Sign in / Sign up

Export Citation Format

Share Document