Anti-Inflammatory and Barrier-Protective Effects of Berberine

2011 ◽  
Vol 49 (10) ◽  
Author(s):  
Lena John ◽  
Anja Fromm ◽  
Michael Fromm ◽  
Jörg-Dieter Schulzke ◽  
Maren Amasheh
2012 ◽  
Vol 2 (10) ◽  
pp. 351
Author(s):  
Fu-Chao Liu ◽  
Huang-Ping Yu

Resveratrol, is a polyphenol that can be extracted from grapes and red wine, possess potential anti-inflammatory effects, which would result in the reduction of cytokine production, the alteration of the expression of adhesion molecule molecules, and the inhibition of neutrophil function. Resveratrol might also act as an antioxidant, anti-aging, and control of cell cycle and apoptosis. Resveratrol has been shown to have protective effects for patients in shock-like states. Such protective phenomenon is reported to be implicated in a variety of intracellular signaling pathways including the regulation of the mitogen-activated protein kinases (MAPK)/ hemeoxygenase-1 (HO-1) pathway, activates estrogen receptor (ER), and the mediation of pro-inflammatory cytokines, reactive oxygen species (ROS) formation and reactive. Moreover, through anti-inflammatory effects and antioxidant properties, the resveratrol is believed to maintain organ function following trauma-hemorrhage.Key words: resveratrol, anti-inflammatory, trauma-hemorrhage.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3913
Author(s):  
Rui-Jie He ◽  
Jun Li ◽  
Yong-Lin Huang ◽  
Ya-Feng Wang ◽  
Bing-Yuan Yang ◽  
...  

Polyphenols, widely distributed in the genus Melastoma plants, possess extensive cellular protective effects such as anti-inflammatory, anti-tyrosinase, and anti-obesity, which makes it a potential anti-inflammatory drug or enzyme inhibitor. Therefore, the aim of this study is to screen for the anti-inflammatory and enzyme inhibitory activities of compounds from title plant. Using silica gel, MCI, ODS C18, and Sephadex LH-20 column chromatography, as well as semipreparative HPLC, the extract of Melastoma normale roots was separated. Four new ellagitannins, Whiskey tannin C (1), 1-O-(4-methoxygalloyl)-6-O-galloyl-2,3-O-(S)-hexahydroxydiphenoyl-β-d-glucose (2), 1-O-galloyl-6-O-(3-methoxygalloyl)-2,3-O-(S)-hexahydroxydiphenoyl-β-d-glucose (3), and 1-O-galloyl-6-O-vanilloyl-2,3-O-(S)-hexahydroxydiphenoyl-β-d-glucose (4), along with eight known polyphenols were firstly obtained from this plant. The structures of all isolates were elucidated by HRMS, NMR, and CD analyses. Using lipopolysaccharide (LPS)-stimulated RAW2 64.7 cells, we investigated the anti-inflammatory activities of compounds 1–4, unfortunately, none of them exhibit inhibit nitric oxide (NO) production, their IC50 values are all > 50 μM. Anti-tyrosinase activity assays was done by tyrosinase inhibition activity screening model. Compound 1 showed weak tyrosinase inhibitory activity with IC50 values of 426.02 ± 11.31 μM. Compounds 2–4 displayed moderate tyrosinase inhibitory activities with IC50 values in the range of 124.74 ± 3.12–241.41 ± 6.23 μM. The structure–activity relationships indicate that hydroxylation at C-3′, C-4′, and C-3 in the flavones were key to their anti-tyrosinase activities. The successful isolation and structure identification of ellagitannin provide materials for the screening of anti-inflammatory drugs and enzyme inhibitors, and also contribute to the development and utilization of M. normale.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1184
Author(s):  
Armin Mooranian ◽  
Thomas Foster ◽  
Corina M Ionescu ◽  
Daniel Walker ◽  
Melissa Jones ◽  
...  

Introduction: Recent studies in our laboratory have shown that some bile acids, such as chenodeoxycholic acid (CDCA), can exert cellular protective effects when encapsulated with viable β-cells via anti-inflammatory and anti-oxidative stress mechanisms. However, to explore their full potential, formulating such bile acids (that are intrinsically lipophilic) can be challenging, particularly if larger doses are required for optimal pharmacological effects. One promising approach is the development of nano gels. Accordingly, this study aimed to examine biological effects of various concentrations of CDCA using various solubilising nano gel systems on encapsulated β-cells. Methods: Using our established cellular encapsulation system, the Ionic Gelation Vibrational Jet Flow technology, a wide range of CDCA β-cell capsules were produced and examined for morphological, biological, and inflammatory profiles. Results and Conclusion: Capsules’ morphology and topographic characteristics remained similar, regardless of CDCA or nano gel concentrations. The best pharmacological, anti-inflammatory, and cellular respiration, metabolism, and energy production effects were observed at high CDCA and nano gel concentrations, suggesting dose-dependent cellular protective and positive effects of CDCA when incorporated with high loading nano gel.


2021 ◽  
Vol 22 (11) ◽  
pp. 6076
Author(s):  
Yu-Chiuan Wu ◽  
Wei-Yun Chen ◽  
Chun-Yin Chen ◽  
Sheng I. Lee ◽  
Yu-Wen Wang ◽  
...  

Particulate matter with aerodynamic diameter ≤2.5 μm (PM2.5) increases oxidative stress through free radical generation and incomplete volatilization. In addition to affecting the respiratory system, PM2.5 causes aging- and inflammation-related damage to skin. Farnesol (Farn), a natural benzyl semiterpene, possesses anti-inflammatory, antioxidative, and antibacterial properties. However, because of its poor water solubility and cytotoxicity at high concentrations, the biomedical applications of Farn have been limited. This study examined the deleterious effects of PM2.5 on the epidermis and dermis. In addition, Farn-encapsulated liposomes (Lipo-Farn) and gelatin/HA/xanthan gel containing Lipo-Farn were prepared and applied in vivo to repair and alleviate PM2.5-induced damage and inflammation in skin. The prepared Lipo-Farn was 342 ± 90 nm in diameter with an encapsulation rate of 69%; the encapsulation significantly reduced the cytotoxicity of Farn. Lipo-Farn exhibited a slow-release rate of 35% after 192 h of incubation. The half-maximal inhibitory concentration of PM2.5 was approximately 850 μg/mL, and ≥400 μg/mL PM2.5 significantly increased IL-6 production in skin fibroblasts. Severe impairment in the epidermis and hair follicles and moderate impairment in the dermis were found in the groups treated with post-PM2.5 and continuous subcutaneous injection of PM2.5. Acute and chronic inflammation was observed in the skin in both experimental categories in vivo. Treatment with 4 mM Lipo-Farn largely repaired PM2.5-induced injury in the epidermis and dermis, restored injured hair follicles, and alleviated acute and chronic inflammation induced by PM2.5 in rat skin. In addition, treatment with 4 mM pure Farn and 2 mM Lipo-Farn exerted moderate reparative and anti-inflammatory effects on impaired skin. The findings of the current study indicate the therapeutic and protective effects of Lipo-Farn against various injuries caused by PM2.5 in the pilosebaceous units, epidermis, and dermis of skin.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wuyang Huang ◽  
Ky Young Cho ◽  
Di Meng ◽  
W. Allan Walker

AbstractAn excessive intestinal inflammatory response may have a role in the pathogenesis of necrotizing enterocolitis (NEC) in very preterm infants. Indole-3-lactic acid (ILA) of breastmilk tryptophan was identified as the anti-inflammatory metabolite involved in probiotic conditioned media from Bifidobacteria longum subsp infantis. This study aimed to explore the molecular endocytic pathways involved in the protective ILA effect against inflammation. H4 cells, Caco-2 cells, C57BL/6 pup and adult mice were used to compare the anti-inflammatory mechanisms between immature and mature enterocytes in vitro and in vivo. The results show that ILA has pleiotropic protective effects on immature enterocytes including anti-inflammatory, anti-viral, and developmental regulatory potentials in a region-dependent and an age-dependent manner. Quantitative transcriptomic analysis revealed a new mechanistic model in which STAT1 pathways play an important role in IL-1β-induced inflammation and ILA has a regulatory effect on STAT1 pathways. These studies were validated by real-time RT-qPCR and STAT1 inhibitor experiments. Different protective reactions of ILA between immature and mature enterocytes indicated that ILA’s effects are developmentally regulated. These findings may be helpful in preventing NEC for premature infants.


2016 ◽  
Vol 116 (07) ◽  
pp. 181-190 ◽  
Author(s):  
Luong Le ◽  
Hayley Duckles ◽  
Torsten Schenkel ◽  
Marwa Mahmoud ◽  
Jordi Tremoleda ◽  
...  

SummaryBlood flow generates wall shear stress (WSS) which alters endothelial cell (EC) function. Low WSS promotes vascular inflammation and atherosclerosis whereas high uniform WSS is protective. Ivabradine decreases heart rate leading to altered haemodynamics. Besides its cardio-protective effects, ivabradine protects arteries from inflammation and atherosclerosis via unknown mechanisms. We hypothesised that ivabradine protects arteries by increasing WSS to reduce vascular inflammation. Hypercholesterolaemic mice were treated with ivabradine for seven weeks in drinking water or remained untreated as a control. En face immunostaining demonstrated that treatment with ivabradine reduced the expression of pro-inflammatory VCAM-1 (p<0.01) and enhanced the expression of anti-inflammatory eNOS (p<0.01) at the inner curvature of the aorta. We concluded that ivabradine alters EC physiology indirectly via modulation of flow because treatment with ivabradine had no effect in ligated carotid arteries in vivo, and did not influence the basal or TNFα-induced expression of inflammatory (VCAM-1, MCP-1) or protective (eNOS, HMOX1, KLF2, KLF4) genes in cultured EC. We therefore considered whether ivabradine can alter WSS which is a regulator of EC inflammatory activation. Computational fluid dynamics demonstrated that ivabradine treatment reduced heart rate by 20 % and enhanced WSS in the aorta. In conclusion, ivabradine treatment altered haemodynamics in the murine aorta by increasing the magnitude of shear stress. This was accompanied by induction of eNOS and suppression of VCAM-1, whereas ivabradine did not alter EC that could not respond to flow. Thus ivabradine protects arteries by altering local mechanical conditions to trigger an anti-inflammatory response.


2021 ◽  
Vol 142 ◽  
pp. 206-215
Author(s):  
Nadjet Bouchara ◽  
François Senejoux ◽  
Didier Fraisse ◽  
Catherine Felgines ◽  
Florence Caldéfie-Chezet ◽  
...  

2021 ◽  
Author(s):  
Zejun Yu ◽  
Dong Li ◽  
Shengbing Zhai ◽  
Hang Xu ◽  
Liu Hao ◽  
...  

The present study aims to investigate protective effects of N-(3-methoxybenzyl)-(9Z,12Z,15Z)-oc tadecatrienamide (M 18:3) on corticosterone-induced neurotoxicity. A neurotoxic model was established by subcutaneous injection of corticosterone (40 mg per kg·bw)...


2018 ◽  
Vol 19 (11) ◽  
pp. 3622 ◽  
Author(s):  
Hyeon Nam ◽  
Li Nan ◽  
Byung Choo

Reflux esophagitis (RE) is a gastrointestinal disease caused by the reflux of gastric acid and stomach contents, and it leads to esophageal damage. Therefore, it is necessary to study the improvement of esophageal damage on a RE-induced model. The present study was accomplished to demonstrate the protective effects of a dichloromethane fraction of Geranium koreanum (DGK) plant on esophageal damage in an acute RE rat model. First, we examined the potential of anti-inflammatory effects of various fractions measured by cell cytotoxicity, morphological changes and nitric oxide (NO) production on lipopolysaccharide (LPS)-induced Raw 264.7 macrophage cells. Then, to evaluate the protective effects on RE, rats were partitioned into the following groups: normal control, RE-induced control and RE rats pre-treated with DGK 100 and 200 mg/kg body weight. The esophageal mucosal ulcer ratio was measured by the Image J program and histological changes were examined using a hematoxylin and eosin staining of the esophageal mucosa. The expression of pro-inflammatory proteins, cytokines and tight junction proteins involved in the esophageal mucosal damage were investigated using Western blotting and an enzyme-linked immunosorbent assay (ELISA) kit with esophagus tissue. DGK chemical profile and phenolic contents were analyzed by liquid chromatography-mass spectrometry (LC-MS/MS). The results showed that DGK exhibited anti-inflammatory effects against LPS-stimulated cells by significantly inhibiting NO production. Additionally, the results in vivo showed that improvement effects of DGK on esophageal mucosal damage. The expression of inflammatory proteins involved in nuclear factor κB (NF-κB) signaling pathways and tight junction protein (claudin-4 and -5) were significantly decreased in esophageal mucosa. We found the potential of DGK as source of replacement therapy products for inflammatory and RE disease.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Hsin-Hsueh Shen ◽  
Yu-Shiuan Tseng ◽  
Ni-Chun Kuo ◽  
Ching-Wen Kung ◽  
Sherif Amin ◽  
...  

Heat stroke (HS) is a life-threatening illness and defined as when body temperature elevates above 40°C accompanied by the systemic inflammatory response syndrome that results in multiple organ dysfunctions. α-Lipoic acid (ALA) acts as a cofactor of mitochondrial enzymes and exerts anti-inflammatory and antioxidant properties in a variety of diseases. This study investigates the beneficial effects of ALA on myocardial injury and organ damage caused by experimental HS and further explores its underlying mechanism. Male Wistar rats were exposed to 42°C until their rectal core temperature reached 42.9°C and ALA was pretreared 40 or 80 mg/kg (i.v.) 1.5 h prior to heat exposure. Results showed that HS-induced lethality and hypothermia were significantly alleviated by ALA treatment that also improved plasma levels of CRE, LDH, and CPK and myocardial injury biomarkers myoglobin and troponin. In addition, ALA reduced cardiac superoxide anion formation and protein expression of cleaved caspase 3 caused by HS. Proinflammatory cytokine TNF-α and NF-κB pathways were significantly reduced by ALA treatment which may be associated with the upregulation of Hsp70. ALA significantly increased the Atg5-12 complex and LC3B II/LC3B I ratio, whereas the p62 and p-mTOR expression was attenuated in HS rats, indicating the activation of autophagy by ALA. In conclusion, ALA ameliorated the deleterious effects of HS by exerting antioxidative and anti-inflammatory capacities. Induction of Hsp70 and activation of autophagy contribute to the protective effects of ALA in HS-induced myocardial injury.


Sign in / Sign up

Export Citation Format

Share Document