Phosphotyrosine-Dependent Signaling: the Role of CoREST/REST Transcriptional Repressors in Neuroblastoma

2017 ◽  
Author(s):  
TL Vu-Han ◽  
S Buhs ◽  
H Gerull ◽  
M Horstmann ◽  
P Nollau
Author(s):  
Samuel Bernard ◽  
Branka Čajavec ◽  
Laurent Pujo-Menjouet ◽  
Michael C Mackey ◽  
Hanspeter Herzel

The transcriptional repressor Hes1, a basic helix-loop-helix family protein, periodically changes its expression in the presomitic mesoderm. Its periodic pattern of expression is retained in a number of cultured murine cell lines. In this paper, we introduce an extended mathematical model for Hes1 oscillatory expression that includes regulation of Hes1 transcription by Drosophila Groucho (Gro) or its vertebrate counterpart, the transducine-like enhancer of split/Groucho-related gene product 1 (TLE1). Gro/TLE1 is a necessary corepressor required by a number of DNA-binding transcriptional repressors, including Hes1. Models of direct repression via Hes1 typically display an expression overshoot after transcription initiation which is not seen in the experimental data. However, numerical simulation and theoretical predictions of our model show that the cofactor Gro/TLE1 reduces the overshoot and is thus necessary for a rapid and finely tuned response of Hes1 to activation signals. Further, from detailed linear stability and numerical bifurcation analysis and simulations, we conclude that the cooperativity coefficient ( h ) for Hes1 self-repression should be large (i.e. h ≥4). Finally, we introduce the characteristic turnaround duration, and show that for our model the duration of the repression loop is between 40 and 60 min.


2021 ◽  
Vol 11 ◽  
Author(s):  
Dan Xie ◽  
Qin Pei ◽  
Jingyuan Li ◽  
Xue Wan ◽  
Ting Ye

The E2F family of transcription factors (E2Fs) consist of eight genes in mammals. These genes encode ten proteins that are usually classified as transcriptional activators or transcriptional repressors. E2Fs are important for many cellular processes, from their canonical role in cell cycle regulation to other roles in angiogenesis, the DNA damage response and apoptosis. A growing body of evidence demonstrates that cancer stem cells (CSCs) are key players in tumor development, metastasis, drug resistance and recurrence. This review focuses on the role of E2Fs in CSCs and notes that many signals can regulate the activities of E2Fs, which in turn can transcriptionally regulate many different targets to contribute to various biological characteristics of CSCs, such as proliferation, self-renewal, metastasis, and drug resistance. Therefore, E2Fs may be promising biomarkers and therapeutic targets associated with CSCs pathologies. Finally, exploring therapeutic strategies for E2Fs may result in disruption of CSCs, which may prevent tumor growth, metastasis, and drug resistance.


Author(s):  
Xiaorui Lu ◽  
Qian Wang ◽  
Mengyao Yang ◽  
Zhi Chen ◽  
Jilun Li ◽  
...  

Heat shock response (HSR) is a universal cellular response that promotes survival following temperature increase. In filamentous Streptomyces , which account for ∼70% commercial antibiotic production, HSR is regulated by transcriptional repressors; in particular, the widespread MerR-family regulator HspR has been identified as a key repressor. However, functions of HspR in other biological processes are unknown. The present study demonstrates that HspR pleiotropically controls avermectin production, morphological development, and heat shock and H 2 O 2 stress responses in industrially important species S. avermitilis . HspR directly activated ave structural genes ( aveA1 , aveA2 ) and H 2 O 2 stress-related genes ( katA1 , catR , katA3 , oxyR , ahpC , ahpD ), whereas it directly repressed heat shock genes (HSGs) ( dnaK1-grpE1-dnaJ1-hspR operon, clpB1p , clpB2p , lonAp ) and developmental genes ( wblB , ssgY , ftsH ). HspR interacted with PhoP (response regulator of the widespread PhoPR two-component system) at dnaK1p to co-repress the important dnaK1-grpE1-dnaJ1-hspR operon. PhoP exclusively repressed target HSGs ( htpG , hsp18_1 , hsp18_2 ) different from those of HspR ( clpB1p , clpB2p , lonAp ). A consensus HspR-binding site, 5′-TTGANBBNNHNNNDSTSHN-3′, was identified within HspR target promoter regions, allowing prediction of the HspR regulon involved in broad cellular functions. Taken together, our findings demonstrate a key role of HspR in coordination of a variety of important biological processes in Streptomyces species. IMPORTANCE Our findings are significant to clarify the molecular mechanisms underlying HspR function in Streptomyces antibiotic production, development, and H 2 O 2 stress responses through direct control of its target genes associated with these biological processes. HspR homologs described to date function as transcriptional repressors, but not as activators. Results of the present study demonstrate that HspR acts as a dual repressor/activator. PhoP was shown to crosstalk with HspR at dnaK1p to co-regulate HSR and have its exclusive target HSGs. The novel role of PhoP in HSR further demonstrates the importance of this regulator in Streptomyces . Overexpression of hspR strongly enhanced avermectin production in S. avermitilis wild-type and industrial strains. These findings provide new insights into the regulatory roles and mechanisms of HspR and PhoP, and facilitate methods for antibiotic overproduction in Streptomyces species.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ralph Klose ◽  
Alexander Prinz ◽  
Fabian Tetzlaff ◽  
Eva-Maria Weis ◽  
Iris Moll ◽  
...  

AbstractVascular smooth muscle cell (VSMC) dysfunction is a hallmark of small vessel disease, a common cause of stroke and dementia. Two of the most frequently mutated genes in familial small vessel disease are HTRA1 and NOTCH3. The protease HTRA1 cleaves the NOTCH3 ligand JAG1 implying a mechanistic link between HTRA1 and Notch signaling. Here we report that HTRA1 is essential for VSMC differentiation into the contractile phenotype. Mechanistically, loss of HTRA1 increased JAG1 protein levels and NOTCH3 signaling activity in VSMC. In addition, the loss of HTRA1 enhanced TGFβ-SMAD2/3 signaling activity. Activation of either NOTCH3 or TGFβ signaling resulted in increased transcription of the HES and HEY transcriptional repressors and promoted the contractile VSMC phenotype. However, their combined over-activation led to an additive accumulation of HES and HEY proteins, which repressed the expression of contractile VSMC marker genes. As a result, VSMC adopted an immature phenotype with impaired arterial vasoconstriction in Htra1-deficient mice. These data demonstrate an essential role of HTRA1 in vascular maturation and homeostasis by controlling Notch and TGFβ signaling.


2020 ◽  
Vol 19 (8) ◽  
pp. 1248-1262 ◽  
Author(s):  
Stephanie Smith ◽  
Shanshuo Zhu ◽  
Lisa Joos ◽  
Ianto Roberts ◽  
Natalia Nikonorova ◽  
...  

Peptides derived from non-functional precursors play important roles in various developmental processes, but also in (a)biotic stress signaling. Our (phospho)proteome-wide analyses of C-TERMINALLY ENCODED PEPTIDE 5 (CEP5)-mediated changes revealed an impact on abiotic stress-related processes. Drought has a dramatic impact on plant growth, development and reproduction, and the plant hormone auxin plays a role in drought responses. Our genetic, physiological, biochemical, and pharmacological results demonstrated that CEP5-mediated signaling is relevant for osmotic and drought stress tolerance in Arabidopsis, and that CEP5 specifically counteracts auxin effects. Specifically, we found that CEP5 signaling stabilizes AUX/IAA transcriptional repressors, suggesting the existence of a novel peptide-dependent control mechanism that tunes auxin signaling. These observations align with the recently described role of AUX/IAAs in stress tolerance and provide a novel role for CEP5 in osmotic and drought stress tolerance.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2655-2655 ◽  
Author(s):  
Courtney L. Jones ◽  
Gregory Kirkpatrick ◽  
Courtney Fleenor ◽  
Welsh Seth ◽  
Leila J Noetzli ◽  
...  

Abstract Recent studies from our group and others have revealed a role for ETV6 germline mutations in the predisposition to ALL. Although ETV6 is among the most commonly mutated genes in ALL, its mechanistic role in leukemogenesis remains unclear. ETV6 is an ETS family transcription factor. ETV6 regulates gene transcription through homo- and hetero- oligomerization with other ETS family members and transcriptional repressors. The germline mutation (P214L amino acid change) identified by our group and others impairs the transcriptional activity and nuclear localization of ETV6 in a dominant negative fashion. The goal of this project is to determine the role of ETV6 in early B cell development and define how germline ETV6 mutations result in predisposition to leukemia. To identify functions of ETV6 in B cell development, we queried the gene expression commons database for evidence of Etv6 expression during B cell development. Etv6 is highly expressed in hematopoietic stem and lymphoid progenitor cells through the pre-pro-B stage (FrA), but its expression is significantly reduced in fraction B and thereafter (P<0.0001). To confirm relative patterns of Etv6 and Pax5 expression in developing B cells, we isolated bone marrow (BM) from wild type (WT) mice and fractionated cells committed to the B cell lineage via B220+ and CD43+ staining by flow cytometry and then separated into the following fractions: Fraction A (CD24low, CD19-), Fraction B (CD19+, CD24+, BP1-) and Fraction C (CD19+ CD24+ BP1+). Etv6 expression decreases as B cells develop and is negatively correlated with Pax5 expression (r2=.9993; P= 0.0167). We next confirmed the expression patterns of ETV6 and PAX5 during B cell development in human samples. We found that ETV6 expression was higher in the early B cell fraction (CD10+, CD34+, CD19-, and CD20-) compared to the preB cell fraction (CD10+, CD34-, CD19+, CD20-). Conversely, we observed that PAX5 expression was higher in the preB cell fraction compared to the early B cell fraction. To determine if a function relationship exists between ETV6 and Pax5 we overexpressed an empty vector (MiG), wild type (WT) ETV6 and ETV6 P214L in a murine lymphoid progenitor line (Ba/F3). ETV6, but not ETV6 P214L overexpression significantly decreased Pax5 expression (P≤0.05). To further interrogate the role of ETV6 in regulating Pax5 transcription we measured the association of ETV6 with putative ETS factor binding sites (GGAA sequence) within the Pax5 transcription start site (TSS) using ChIP-PCR. ETV6 is associated with the proximal GGAA site 72 base pairs upstream of the Pax5 TSS, but not GGAA sites further from the TSS. In addition, the transcriptional repressors SIN3A and HDAC3 were detected on the same regions of the Pax5 locus. We next determined the consequences of ETV6 mutation on the recruitment of ETV6, SIN3A, and HDAC3 to the Pax5 locus by performing ChIP-PCR in Ba/F3 cells that express a FLAG-tagged WT ETV6 or ETV6 P214L. We detected association of ETV6, SIN3A and HDAC3 with the proximal GGAA site upon expression of WT ETV6, but not ETV6 P214L. We conclude that ETV6, SIN3A and HDAC3 are responsible for the repression of Pax5 transcription. Moreover, mutant ETV6 inhibits the ability of normal ETV6 to bind and recruit SIN3A and HDAC3 to the Pax5 locus. Finally, we determined if the recruitment of SIN3A and HDACs to the Pax5 locus was essential to repression of Pax5 by WT ETV6 by knocking out SIN3A and inhibiting HDACs using pan HDAC inhibitor, SAHA and measuring Pax5 expression by RT-PCR. We found that upon SIN3A knockout or HDAC inhibition Pax5 expression was no longer repressed upon WT ETV6 overexpression. To determine the consequences of ETV6 P214L expression on B cell development, we generated a transgenic mouse expressing the P214L mutation in the endogenous ETV6 gene. Preliminary data suggests that these mice have thrombocytopenia, similar to patients with germline ETV6 mutation. In addition, mice with the ETV6 P214L mutation displayed reduced level of cKIT expression on the FrA B cell population. Further studies will be necessary to understand the consequences of reduced cKIT expression to overall B cell development and if this cKIT reduction is linked to aberrant Pax5 expression. In conclusion, ETV6 regulates Pax5 expression through the recruitment of SIN3A and HDAC3 to the Pax5 locus. These findings are significant because Pax5 misregulation results in a B cell development halt, lineage infidelity and leukemogenesis. Disclosures No relevant conflicts of interest to declare.


2012 ◽  
Vol 11 (10) ◽  
pp. 1219-1225 ◽  
Author(s):  
Allia K. Lindsay ◽  
Aurélie Deveau ◽  
Amy E. Piispanen ◽  
Deborah A. Hogan

ABSTRACTCandida albicans, a fungal pathogen of humans, regulates its morphology in response to many environmental cues and this morphological plasticity contributes to virulence. Farnesol, an autoregulatory molecule produced byC. albicans, inhibits the induction of hyphal growth by inhibiting adenylate cyclase (Cyr1). The role of farnesol and Cyr1 in controlling the maintenance of hyphal growth has been less clear. Here, we demonstrate that preformed hyphae transition to growth as yeast in response to farnesol and that strains with increased cyclic AMP (cAMP) signaling exhibit more resistance to farnesol. Exogenous farnesol did not induce the hypha-to-yeast transition in mutants lacking the Tup1 or Nrg1 transcriptional repressors in embedded conditions. Although body temperature is not required for embedded hyphal growth, we found that the effect of farnesol on the hypha-to-yeast transition varies inversely with temperature. Our model of Cyr1 activity being required for filamentation is also supported by our liquid assay data, which show increased yeast formation when preformed filaments are treated with farnesol. Together, these data suggest that farnesol can modulate morphology in preformed hyphal cells and that the repression of hyphal growth maintenance likely occurs through the inhibition of cAMP signaling.


2007 ◽  
Vol 177 (4S) ◽  
pp. 256-257
Author(s):  
Hasan Abdur Rahman Qazi ◽  
Raj P. Pal ◽  
Richard E. Edwards ◽  
J. Killian Mellon ◽  
Eugene Tulchinsky ◽  
...  

Microbiology ◽  
2010 ◽  
Vol 156 (8) ◽  
pp. 2374-2383 ◽  
Author(s):  
Renata Novakova ◽  
Peter Kutas ◽  
Lubomira Feckova ◽  
Jan Kormanec

Two regulatory genes, aur1P and aur1R, have been previously identified upstream of the aur1 polyketide gene cluster involved in biosynthesis of the angucycline-like antibiotic auricin in Streptomyces aureofaciens CCM 3239. The aur1P gene encodes a protein similar to the response regulators of bacterial two-component signal transduction systems and has been shown to specifically activate expression of the auricin biosynthetic genes. The aur1R gene encodes a protein homologous to transcriptional repressors of the TetR family. Here we describe the characterization of the aur1R gene. Expression of the gene is directed by a single promoter, aur1Rp, which is induced just before stationary phase. Disruption of aur1R in S. aureofaciens CCM 3239 had no effect on growth and differentiation. However, the disrupted strain produced more auricin than its parental wild-type S. aureofaciens CCM 3239 strain. Transcription from the aur1Ap and aur1Pp promoters, directing expression of the first biosynthetic gene in the auricin gene cluster and the pathway-specific transcriptional activator, respectively, was increased in the S. aureofaciens CCM 3239 aur1R mutant strain. However, Aur1R was shown to bind specifically only to the aur1Pp promoter in vitro. This binding was abolished by the addition of auricin and/or its intermediates. The results indicate that the Aur1R regulator specifically represses expression of the aur1P gene, which encodes a pathway-specific activator of the auricin biosynthetic gene cluster in S. aureofaciens CCM 3239, and that this repression is relieved by auricin or its intermediates.


Blood ◽  
2013 ◽  
Vol 121 (15) ◽  
pp. 2845-2853 ◽  
Author(s):  
Andrea Lunardi ◽  
Jlenia Guarnerio ◽  
Guocan Wang ◽  
Takahiro Maeda ◽  
Pier Paolo Pandolfi

Abstract In the human genome, 43 different genes are found that encode proteins belonging to the family of the POK (poxvirus and zinc finger and Krüppel)/ZBTB (zinc finger and broad complex, tramtrack, and bric à brac) factors. Generally considered transcriptional repressors, several of these genes play fundamental roles in cell lineage fate decision in various tissues, programming specific tasks throughout the life of the organism. Here, we focus on functions of leukemia/lymphoma-related factor/POK erythroid myeloid ontogenic factor, which is probably one of the most exciting and yet enigmatic members of the POK/ZBTB family.


Sign in / Sign up

Export Citation Format

Share Document