A Practical, Large-Scale Synthesis of p-(Difluoroiodo)toluene (p-TolIF2)

Synthesis ◽  
2019 ◽  
Vol 51 (16) ◽  
pp. 3055-3059 ◽  
Author(s):  
Jason Tao ◽  
Graham K. Murphy

p-(Difluoroiodo)toluene (p-TolIF2) is a versatile fluorinating agent that acts as both a surrogate for elemental fluorine, and as a source of ‘electrophilic’ fluorine. Described here is a detailed three-step synthesis of p-TolIF2, carried out on a 50 mmol scale, that consistently provides high-quality product that is suitable for long-term storage. The reactions employ inexpensive, readily available starting materials and reagents, and uses the commodity chemical 48% aqueous HF as the source of fluorine atoms.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Grzegorz Leśnierowski ◽  
Tianyu Yang ◽  
Renata Cegielska-Radziejewska

AbstractThermal modification is an effective method that induces significant expansion of the antimicrobial properties and other valuable properties of chicken egg white lysozyme. In our latest research, a new innovative method of enzyme modification was developed, in which microwave radiation was used as an energy source to process liquid lysozyme concentrate (LLC). After modification, high-quality preparations were obtained. However, long-term storage in a concentrated form initiated various processes that caused darkening over time and could also lead to other significant changes to their structure and, consequently, to their functional properties. This necessitated multidirectional research to explain this phenomenon. This paper presents the results of research aimed at assessing the physicochemical changes in the properties of microwave-modified lysozyme in the form of a liquid concentrate after long-term storage under refrigeration conditions. The assessment also considered the conditions under the acidity of the modifying medium and the duration of the microwave modification. The analysis showed that the values of the basic parameters determining the quality and usefulness of the modified enzyme significantly improved during long-term storage of the preparations. The greatest changes were observed in the preparations modified for the longest time and in the most acidic environment (process time 260 s, pH 2.0), the number of oligomers under these conditions increased by 18% after 12 months of holding, and the surface hydrophobicity increased by as much as 31%. In addition, microbiological tests showed that the preparations of microwave-modified lysozyme had an effect on gram-positive bacteria as well as on gram-negative, and this effect was significantly enhanced after 12 months. The results confirm that LLC modification with microwave radiation is a highly efficient method to prepare high-quality and high utility potential lysozyme. Notably, an interesting and important phenomenon was the observation of the unconventional behaviour of the preparations during their long-term storage, which increased their utility potential significantly.


2010 ◽  
Vol 16 (4) ◽  
pp. 343-350 ◽  
Author(s):  
M. Guerra ◽  
P.A. Casquero

Two strategies, summer pruning and postharvest Ca treatment, were studied in apple (Malus domestica Borkh) cv. ‘Reinette du Canada’ in order to analyze its effect on the fruit quality during storage. Summer pruning and Ca treatment reduced external and internal bitter-pits; so after 180 days of storage, both treatments decreased external bitter-pit by 10.0% and 16.7%, respectively. Summer pruning influenced color, firmness, total soluble solids and titratable acidity (TA) of fruit during storage, whereas Ca treatment only affected firmness and TA. Fruit from pruned trees had significant lower K and Mg than those from unpruned trees and Ca treatment increased Ca content. Orchard management, by means of summer pruning, combined with Ca postharvest application would be useful to prevent losses due to bitter-pit during storage in commercial orchards. However, in organic orchards, summer pruning would be the ecological alternative to decrease bitter-pit incidence during storage in high quality apple cv. ‘Reinette du Canada’. K/Ca ratio, on the peel at harvest, turned out to be the best parameter to correlate with external and internal bitter-pits during storage; so this ratio would be useful to predict bitter-pit on long-term storage.


Metabolites ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 93 ◽  
Author(s):  
Cora McHugh ◽  
Thomas Flott ◽  
Casey Schooff ◽  
Zyad Smiley ◽  
Michael Puskarich ◽  
...  

Background: Though blood is an excellent biofluid for metabolomics, proteins and lipids present in blood can interfere with 1d-1H NMR spectra and disrupt quantification of metabolites. Here, we present effective macromolecule removal strategies for serum and whole blood (WB) samples. Methods: A variety of macromolecule removal strategies were compared in both WB and serum, along with tests of ultrafiltration alone and in combination with precipitation methods. Results: In healthy human serum, methanol:chloroform:water extraction with ultrafiltration was compared to methanol precipitation with and without ultrafiltration. Methods were tested in healthy pooled human serum, and in serum from patients with sepsis. Effects of long-term storage at −80 °C were tested to explore the impact of macromolecule removal strategy on serum from different conditions. In WB a variety of extraction strategies were tested in two types of WB (from pigs and baboons) to examine the impact of macromolecule removal strategies on different samples. Conclusions: In healthy human serum methanol precipitation of serum with ultrafiltration was superior, but was similar in recovery and variance to methanol:chloroform:water extraction with ultrafiltration in pooled serum from patients with sepsis. In WB, high quality, quantifiable spectra were obtained with the use of a methanol: chloroform precipitation.


MRS Bulletin ◽  
2001 ◽  
Vol 26 (9) ◽  
pp. 684-688 ◽  
Author(s):  
T. Gouder ◽  
F. Wastin ◽  
J. Rebizant ◽  
G.H. Lander

Studies of the actinide elements and compounds were (and are) motivated by the need to characterize their structural and thermodynamic properties for the development of nuclear fuels and the treatment of waste, whether it be for long-term storage or ideas involving transmutation in high-powered accelerators. For the most part, tables giving these data exist, although the data for transuranium compounds are rather sparse. A much more difficult task is to understand the data and develop theories that have predictive power in this part of the periodic table. In doing this, however, we are confronted with the extremely complicated electronic structure of the 5f shell and the great paucity of high-quality data on materials containing transuranium isotopes.


2018 ◽  
Vol 66 (08) ◽  
pp. 667-669 ◽  
Author(s):  
C. de Sierra ◽  
J. Cuenca-Castillo ◽  
F. Estevez-Cid

AbstractFilming surgeries for teaching purposes, publications, and patient records has become increasingly popular as the systems for digital recording have evolved, becoming high-quality systems, both smaller and lighter. Digital recording allows long-term storage, retrieval, and database organization. In addition, sharing digital contents has also become easier since video sharing sites and social networks make it possible to upload these contents onto the Internet. We describe a simple and economical system for surgeons to record surgeries in high definition under sterile conditions without any interference with the surgeon's line of vision.


2020 ◽  
Author(s):  
David Manheim ◽  
Derek Foster

Over the coming year, preventing further waves of COVID-19 and reducing its impact on society will likely require vaccines, so accelerating their availability is critical. However, preparations for large-scale manufacturing, such as building production facilities, are typically delayed until a vaccine is proven safe and effective. This makes sense from a commercial perspective, but the additional time before the vaccine becomes available incurs great costs in terms of lives lost and damage to the economy. There are several potential solutions to reducing the delay between the vaccine being proven effective and its being mass-produced, all of which involve incentives or subsidies to invest in production facilities. We review these, and propose a novel approach using “option-based guarantees,” in which the government commits to paying a proportion of the manufacturer’s preparation costs should the product turn out not to be viable. This counterintuitive approach of payment for failure is appropriate because in the case of success, a company makes money from the product itself, and does not need additional money from the government. This reduces the risk to the company while maintaining an incentive to produce a high-quality product quickly and at scale.


2018 ◽  
Vol 142 (3) ◽  
pp. 308-312 ◽  
Author(s):  
Gilda da Cunha Santos

Context.— Traditional methods for storing histologic and cytologic specimens for future use in molecular assays have consisted of either snap-freezing with cryopreservation or formalin-fixing, paraffin-embedding the samples. Although snap-freezing with cryopreservation is recommended for better preservation of nucleic acids, the infrastructure and space required for archiving impose challenges for high-volume pathology laboratories. Cost-effective, long-term storage at room temperature; relatively easy shipment; and standardized handling can be achieved with formalin-fixed, paraffin-embedded samples, but formalin fixation induces fragmentation and chemical modification of nucleic acids. Advances in next-generation sequencing platforms, coupled with an increase in diagnostic, prognostic, and predictive molecular biomarkers have created a demand for high-quality nucleic acids. To address issues of the quality of nucleic acid and logistics in sample acquisition, alternatives for specimen preservation and long-term storage have been described and include novel universal tissue fixatives, stabilizers, and technologies. Objective.— To collect, retrieve, and review information from studies describing the use of nucleic acids recovered from cytologic/tissue specimens stored on Flinders Technology Associates (FTA, GE Whatman, Maidstone, Kent, United Kingdom) cards for downstream molecular applications. Data Sources.— An electronic literature search in the PubMed (National Center for Biotechnology Information, Bethesda, Maryland) database allowed the selection of manuscripts addressing the use of FTA cards for storage of cytologic samples for molecular analysis. Only articles published in English were retrieved. Conclusions.— The use of FTA cards is a versatile method for fostering multicenter, international collaborations and clinical trials that require centralized testing, long-distance shipment, and high-quality nucleic acids for molecular techniques. Studies with controlled temperature are required to test the quality of recovered RNA after long-term storage.


2017 ◽  
Vol 149 (5) ◽  
pp. 607-615 ◽  
Author(s):  
Enakshi Ghosh ◽  
Chandish R. Ballal

AbstractThe role of temperature in diapause induction was studied as a mode of long-term storage of Trichogramma chilonis (Ishii) (Hymenoptera: Trichogrammatidae). Three different strains of this widely used biocontrol agent (T. chilonis Nilgiris strain, T. chilonis Kodaikanal strain, and T. chilonis 15 °C strain) reared on the factitious host Corcyra cephalonica (Stainton) (Lepidoptera: Pyralidae) were used for this experiment. Except T. chilonis laboratory strain, all the other strains could successfully undergo diapause at their pre-pupal stage. Maximum percentage of healthy pre-pupae were recorded in the three strains by providing a pre-storage temperature of 10 °C for 35 days with eight hours of photophase wherein 75–87% could enter into diapause. Further, at a maintenance temperature of 5 °C with 24 hours of scotophase, diapause could be maintained. Diapause could be terminated after six months of storage with 23–36% of adult emergence. However, there was significant reduction in longevity and parasitism rate of the emerged adults. Considering superior biological parameters, 95 days of storage (including pre-storage duration) could provide around 60% adult emergence. Successful long-term storage of T. chilonis strains through diapause induction can facilitate commercial insectaries in stockpiling this biocontrol agent for large-scale field releases. This is the first study on successful induction and termination of diapause in T. chilonis strains and evaluating their performance attributes.


2021 ◽  
Vol 22 (12) ◽  
pp. 6301
Author(s):  
Hyeri Jeong ◽  
Young-Eun Jeon ◽  
Jin-Kyoung Yang ◽  
Jaehi Kim ◽  
Woo-Jae Chung ◽  
...  

Antioxidants play a critical role in the treatment of degenerative diseases and delaying the aging of dermal tissue. Caffeic acid (CA) is a representative example of the antioxidants found in plants. However, CA is unsuitable for long-term storage because of its poor stability under ambient conditions. Caffeoyl-Pro-His-NH2 (CA-Pro-His-NH2, CA-PH) exhibits the highest antioxidant activity, free radical scavenging and lipid peroxidation inhibition activity among the histidine-containing CA-conjugated dipeptides reported to date. The addition of short peptides to CA, such as Pro-His, is assumed to synergistically enhance its antioxidative activity. In this study, several caffeoyl-prolyl-histidyl-Xaa-NH2 derivatives were synthesized and their antioxidative activities evaluated. CA-Pro-His-Asn-NH2 showed enhanced antioxidative activity and higher structural stability than CA-PH, even after long-term storage. CA-Pro-His-Asn-NH2 was stable for 3 months, its stability being evaluated by observing the changes in its NMR spectra. Moreover, the solid-phase synthetic strategy used to prepare these CA-Pro-His-Xaa-NH2 derivatives was optimized for large-scale production. We envision that CA-Pro-His-Xaa-NH2 derivatives can be used as potent dermal therapeutic agents and useful cosmetic ingredients.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 1154 ◽  
Author(s):  
David Manheim ◽  
Derek Foster

Accelerating the availability of COVID-19 vaccines is critical to preventing further waves and mitigating the impact on society. However, preparations for large-scale manufacturing, such as building production facilities, are typically delayed until a vaccine is proven safe and effective. This makes sense from a commercial perspective, but incurs great costs in terms of lives lost and damage to the economy. Several policy options are available to reduce this delay, all of which involve incentives or subsidies to invest in production facilities. We review existing approaches, then propose a novel alternative using “option-based guarantees” in which the government commits to paying a proportion of the manufacturer’s preparation costs should the product turn out not to be viable. Counterintuitively, this “payment for failure” is appropriate because in the case of success, a company makes a profit from the product itself, and does not need additional money from the government. While other approaches have critical roles, we argue that option-based guarantees are the most promising approach to ensuring a rapid vaccine for COVID-19. Compared to the alternative approaches, they reduce both costs to the government and risk to the companies, while maintaining an incentive to produce a high-quality product quickly and at scale.


Sign in / Sign up

Export Citation Format

Share Document