The NLRP3 Inflammasome in Alcoholic and Nonalcoholic Steatohepatitis

2020 ◽  
Vol 40 (03) ◽  
pp. 298-306 ◽  
Author(s):  
Jana Knorr ◽  
Alexander Wree ◽  
Frank Tacke ◽  
Ariel E. Feldstein

AbstractNonalcoholic steatohepatitis (NASH) and alcoholic hepatitis (ASH) are advanced forms of fatty liver diseases that are associated with a high morbidity and mortality worldwide. Patients with ASH or NASH are more susceptible to the progression of fibrosis and cirrhosis up to the development of hepatocellular carcinoma. Currently, there are limited medical therapies available. Accompanied by the asymptomatic disease progression, the demand for liver transplants is high. This review provides an overview about the growing evidence for a central role of NLR family pyrin domain containing 3 (NLRP3) inflammasome, a multiprotein complex that acts as a central driver of inflammation via activation of caspase 1, maturation and release of pro-inflammatory cytokines including interleukin-1β, and trigger of inflammatory pyroptotic cell death in both NASH and ASH. We also discuss potential therapeutic approaches targeting NLRP3 inflammasome and related upstream and downstream pathways to develop prognostic biomarkers and medical treatments for both liver diseases.

2019 ◽  
Vol 17 (7) ◽  
pp. 582-589 ◽  
Author(s):  
Yujie Luo ◽  
Cesar Reis ◽  
Sheng Chen

Hemorrhagic stroke is a devastating disease with high morbidity and mortality. There is still a lack of effective therapeutic approach. The recent studies have shown that the innate immune system plays a significant role in hemorrhagic stroke. Microglia, as major components in innate immune system, are activated and then can release cytokines and chemokines in response to hemorrhagic stroke, and ultimately led to neuroinflammation and brain injury. The NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome is predominantly released by microglia and is believed as the main contributor of neuroinflammation. Several studies have focused on the role of NLRP3 inflammasome in hemorrhagic stroke-induced brain injury, however, the specific mechanism of NLRP3 activation and regulation remains unclear. This review summarized the mechanism of NLRP3 activation and its role in hemorrhagic stroke and discussed the translational significance.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Yang Zhang ◽  
Weifang Liu ◽  
Yanqi Zhong ◽  
Qi Li ◽  
Mengying Wu ◽  
...  

NOD-like receptor family, pyrin domain-containing protein 3 (NLRP3) inflammasome-mediated pyroptosis is a crucial event in the preeclamptic pathogenesis, tightly linked with the uteroplacental TLR4/NF-κB signaling. Trophoblastic glycometabolism reprogramming has now been noticed in the preeclampsia pathogenesis, plausibly modulated by the TLR4/NF-κB signaling as well. Intriguingly, cellular pyroptosis and metabolic phenotypes may be inextricably linked and interacted. Metformin (MET), a widely accepted NF-κB signaling inhibitor, may have therapeutic potential in preeclampsia while the underlying mechanisms remain unclear. Herein, we investigated the role of MET on trophoblastic pyroptosis and its relevant metabolism reprogramming. The safety of pharmacologic MET concentration to trophoblasts was verified at first, which had no adverse effects on trophoblastic viability. Pharmacological MET concentration suppressed NLRP3 inflammasome-induced pyroptosis partly through inhibiting the TLR4/NF-κB signaling in preeclamptic trophoblast models induced via low-dose lipopolysaccharide. Besides, MET corrected the glycometabolic reprogramming and oxidative stress partly via suppressing the TLR4/NF-κB signaling and blocking transcription factor NF-κB1 binding on the promoter PFKFB3, a potent glycolytic accelerator. Furthermore, PFKFB3 can also enhance the NF-κB signaling, reduce NLRP3 ubiquitination, and aggravate pyroptosis. However, MET suppressed pyroptosis partly via inhibiting PFKFB3 as well. These results provided that the TLR4/NF-κB/PFKFB3 pathway may be a novel link between metabolism reprogramming and NLRP3 inflammasome-induced pyroptosis in trophoblasts. Further, MET alleviates the NLRP3 inflammasome-induced pyroptosis, which partly relies on the regulation of TLR4/NF-κB/PFKFB3-dependent glycometabolism reprogramming and redox disorders. Hence, our results provide novel insights into the pathogenesis of preeclampsia and propose MET as a potential therapy.


Author(s):  
Marcelle de Carvalho Ribeiro ◽  
Gyongyi Szabo

The involvement of inflammasomes in the proinflammatory response observed in chronic liver diseases, such as alcohol-associated liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD), is widely recognized. Although there are different types of inflammasomes, most studies to date have given attention to NLRP3 (nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3) in the pathogenesis of ALD, NAFLD/nonalcoholic steatohepatitis, and fibrosis. Canonical inflammasomes are intracellular multiprotein complexes that are assembled after the sensing of danger signals and activate caspase-1, which matures interleukin (IL)-1β, IL-18, and IL-37 and also induces a form of cell death called pyroptosis. Noncanonical inflammasomes activate caspase-11 to induce pyroptosis. We discuss the different types of inflammasomes involved in liver diseases with a focus on ( a) signals and mechanisms of inflammasome activation, ( b) the role of different types of inflammasomes and their products in the pathogenesis of liver diseases, and ( c) potential therapeutic strategies targeting components of the inflammasomes or cytokines produced upon inflammasome activation. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1552
Author(s):  
Maria Sebastian-Valverde ◽  
Giulio M. Pasinetti

As a consequence of the considerable increase in the human lifespan over the last century, we are experiencing the appearance and impact of new age-related diseases. The causal relationships between aging and an enhanced susceptibility of suffering from a broad spectrum of diseases need to be better understood. However, one specific shared feature seems to be of capital relevance for most of these conditions: the low-grade chronic inflammatory state inherently associated with aging, i.e., inflammaging. Here, we review the molecular and cellular mechanisms that link aging and inflammaging, focusing on the role of the innate immunity and more concretely on the nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, as well as how the chronic activation of this inflammasome has a detrimental effect on different age-related disorders.


Author(s):  
Xinxu Yuan ◽  
Owais M. Bhat ◽  
Arun Samidurai ◽  
Anindita Das ◽  
Yang Zhang ◽  
...  

Recent studies reported that vascular endothelial cells (ECs) secrete NLR family pyrin domain-containing 3 (NLRP3) inflammasome products such as interleukin-1β (IL-1β) via extracellular vesicles (EVs) under various pathological conditions. EVs represent one of the critical mechanisms mediating the cell-to-cell communication between ECs and vascular smooth muscle cells (VSMCs). However, whether or not the inflammasome-dependent EVs directly participate in the regulation of VSMC function remains unknown. In the present study, we found that in cultured carotid ECs, atherogenic stimulation by oxysterol 7-ketocholesterol (7-Ket) induced NLRP3 inflammasome formation and activation, reduced lysosome-multivesicular bodies (MVBs) fusion, and increased secretion of EVs that contain inflammasome product IL-1β. These EC-derived IL-1β-containing EVs promoted synthetic phenotype transition of co-cultured VSMCs, whereas EVs from unstimulated ECs have the opposite effects. Moreover, acid ceramidase (AC) deficiency or lysosome inhibition further exaggerated the 7-Ket-induced release of IL-1β-containing EVs in ECs. Using a Western diet (WD)-induced hypercholesterolemia mouse model, we found that endothelial-specific AC gene knockout mice (Asah1fl/fl/ECCre) exhibited augmented WD-induced EV secretion with IL-1β and more significantly decreased the interaction of MVBs with lysosomes in the carotid arterial wall compared to their wild-type littermates (WT/WT). The endothelial AC deficiency in Asah1fl/fl/ECCre mice also resulted in enhanced VSMC phenotype transition and accelerated neointima formation. Together, these results suggest that NLRP3 inflammasome-dependent IL-1β production during hypercholesterolemia promotes VSMC phenotype transition to synthetic status via EV machinery, which is controlled by lysosomal AC activity. Our findings provide novel mechanistic insights into understanding the pathogenic role of endothelial NLRP3 inflammasome in vascular injury through EV-mediated EC-to-VSMC regulation.


2020 ◽  
Vol 21 (22) ◽  
pp. 8437
Author(s):  
Jae-Sung Kim ◽  
Seok-Jun Mun ◽  
Euni Cho ◽  
Donggyu Kim ◽  
Wooic Son ◽  
...  

Dense granule proteins (GRAs) are essential components in Toxoplasma gondii, which are suggested to be promising serodiagnostic markers in toxoplasmosis. In this study, we investigated the function of GRA9 in host response and the associated regulatory mechanism, which were unknown. We found that GRA9 interacts with NLR family pyrin domain containing 3 (NLRP3) involved in inflammation by forming the NLRP3 inflammasome. The C-terminal of GRA9 (GRA9C) is essential for GRA9–NLRP3 interaction by disrupting the NLRP3 inflammasome through blocking the binding of apoptotic speck-containing (ASC)-NLRP3. Notably, Q200 of GRA9C is essential for the interaction of NLRP3 and blocking the conjugation of ASC. Recombinant GRA9C (rGRA9C) showed an anti-inflammatory effect and the elimination of bacteria by converting M1 to M2 macrophages. In vivo, rGRA9C increased the anti-inflammatory and bactericidal effects and subsequent anti-septic activity in CLP- and E. coli- or P. aeruginosa-induced sepsis model mice by increasing M2 polarization. Taken together, our findings defined a role of T. gondii GRA9 associated with NLRP3 in host macrophages, suggesting its potential as a new candidate therapeutic agent for sepsis.


2020 ◽  
Vol 150 (7) ◽  
pp. 1693-1704
Author(s):  
Kate J Claycombe-Larson ◽  
Travis Alvine ◽  
Dayong Wu ◽  
Nishan S Kalupahana ◽  
Naima Moustaid-Moussa ◽  
...  

ABSTRACT Inflammation is largely mediated by immune cells responding to invading pathogens, whereas metabolism is oriented toward producing usable energy for vital cell functions. Immunometabolic alterations are considered key determinants of chronic inflammation, which leads to the development of chronic diseases. Studies have demonstrated that macrophages and the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome are activated in key metabolic tissues to contribute to increased risk for type 2 diabetes mellitus, Alzheimer disease, and liver diseases. Thus, understanding the tissue-/cell-type–specific regulation of the NLRP3 inflammasome is crucial for developing intervention strategies. Currently, most of the nutrients and bioactive compounds tested to determine their inflammation-reducing effects are limited to animal models. Future studies need to address how dietary compounds regulate immune and metabolic cell reprograming in humans.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Claudia Blasetti Fantauzzi ◽  
Stefano Menini ◽  
Carla Iacobini ◽  
Chiara Rossi ◽  
Eleonora Santini ◽  
...  

Molecular mechanisms driving transition from simple steatosis to nonalcoholic steatohepatitis (NASH), a critical step in the progression of nonalcoholic fatty liver disease (NAFLD) to cirrhosis, are poorly defined. This study aimed at investigating the role of the purinergic receptor 2X7 (PR2X7), through the NLRP3 inflammasome, in the development of NASH. To this end, mice knockout for the Pr2x7 gene (Pr2x7−/−) and coeval wild-type (WT) mice were fed a high-fat diet (HFD) or normal-fat diet for 16 weeks. NAFLD grade and stage were lower in Pr2x7−/− than WT mice, and only 1/7 Pr2x7−/− animals showed evidence of NASH, as compared with 4/7 WT mice. Molecular markers of inflammation, oxidative stress, and fibrosis were markedly increased in WT-HFD mice, whereas no or significantly reduced increments were detected in Pr2x7−/− animals, which showed also decreased modulation of genes of lipid metabolism. Deletion of Pr2x7 gene was associated with blunted or abolished activation of NLRP3 inflammasome and expression of its components, which were induced in liver sinusoidal endothelial cells challenged with appropriate stimuli. These data show that Pr2x7 gene deletion protects mice from HFD-induced NASH, possibly through blunted activation of NLRP3 inflammasome, suggesting that PR2X7 and NLRP3 may represent novel therapeutic targets.


2000 ◽  
Vol 14 (4) ◽  
pp. 321-326 ◽  
Author(s):  
Brent A Neuschwander-Tetri

Nonalcoholic steatohepatitis (NASH) is a histological diagnosis applied to a constellation of liver biopsy findings that develop in the absence of alcohol abuse. Steatosis, a mixed cellular inflammatory infiltrate across the lobule, evidence of hepatocyte injury and fibrosis are the findings that can be seen. This entity is often identified during evaluation of elevated aminotransferases after exclusion of viral, metabolic and other causes of liver disease. Obesity is a major risk factor for NASH. The role of diabetes is less certain, although evidence is accumulating that hyperinsulinism may play an important pathophysiological role. Patients sometimes suffer from right upper quadrant abdominal pain and fatigue; examination may reveal centripetal obesity and hepatomegaly. Although patients are often discovered because of persistent aminotransferase elevations, these enzymes can be normal in NASH. When they are elevated, the alanine aminotransferase level is typically significantly greater than the aspartate aminotransferase level. This can be particularly helpful for excluding occult alcohol abuse. Imaging studies identify hepatic steatosis when the amount of fat in the liver is significant; however, imaging does not distinguish benign steatosis from NASH. Ultimately a liver biopsy is needed to diagnose NASH. The biopsy may be useful for establishing prognosis based on the presence or absence of fibrosis and for excluding other unexpected causes of liver enzyme elevations. Weight loss is the mainstay of treatment for obese patients. About 15% to 40% of NASH patients develop fibrosis; how many of these cases progress to cirrhosis is unknown, but about 1% of liver transplants are performed with a pretransplant diagnosis of NASH.


Sign in / Sign up

Export Citation Format

Share Document