scholarly journals Nutrients and Immunometabolism: Role of Macrophage NLRP3

2020 ◽  
Vol 150 (7) ◽  
pp. 1693-1704
Author(s):  
Kate J Claycombe-Larson ◽  
Travis Alvine ◽  
Dayong Wu ◽  
Nishan S Kalupahana ◽  
Naima Moustaid-Moussa ◽  
...  

ABSTRACT Inflammation is largely mediated by immune cells responding to invading pathogens, whereas metabolism is oriented toward producing usable energy for vital cell functions. Immunometabolic alterations are considered key determinants of chronic inflammation, which leads to the development of chronic diseases. Studies have demonstrated that macrophages and the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome are activated in key metabolic tissues to contribute to increased risk for type 2 diabetes mellitus, Alzheimer disease, and liver diseases. Thus, understanding the tissue-/cell-type–specific regulation of the NLRP3 inflammasome is crucial for developing intervention strategies. Currently, most of the nutrients and bioactive compounds tested to determine their inflammation-reducing effects are limited to animal models. Future studies need to address how dietary compounds regulate immune and metabolic cell reprograming in humans.

2019 ◽  
Vol 20 (12) ◽  
pp. 2876 ◽  
Author(s):  
Carolina Pellegrini ◽  
Matteo Fornai ◽  
Luca Antonioli ◽  
Corrado Blandizzi ◽  
Vincenzo Calderone

Several lines of evidence point out the relevance of nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome as a pivotal player in the pathophysiology of several neurological and psychiatric diseases (i.e., Parkinson’s disease (PD), Alzheimer’s disease (AD), multiple sclerosis (MS), amyotrophic lateral sclerosis, and major depressive disorder), metabolic disorders (i.e., obesity and type 2 diabetes) and chronic inflammatory diseases (i.e., intestinal inflammation, arthritis, and gout). Intensive research efforts are being made to achieve an integrated view about the pathophysiological role of NLRP3 inflammasome pathways in such disorders. Evidence is also emerging that the pharmacological modulation of NLRP3 inflammasome by phytochemicals could represent a promising molecular target for the therapeutic management of neurological, psychiatric, metabolic, and inflammatory diseases. The present review article has been intended to provide an integrated and critical overview of the available clinical and experimental evidence about the role of NLRP3 inflammasome in the pathophysiology of neurological, psychiatric, metabolic, and inflammatory diseases, including PD, AD, MS, depression, obesity, type 2 diabetes, arthritis, and intestinal inflammation. Special attention has been paid to highlight and critically discuss current scientific evidence on the effects of phytochemicals on NLRP3 inflammasome pathways and their potential in counteracting central neuroinflammation, metabolic alterations, and immune/inflammatory responses in such diseases.


2018 ◽  
Vol 15 (1) ◽  
pp. 31-43 ◽  
Author(s):  
Sayantan Nath ◽  
Sambuddha Das ◽  
Aditi Bhowmik ◽  
Sankar Kumar Ghosh ◽  
Yashmin Choudhury

Background:Studies pertaining to association of GSTM1 and GSTT1 null genotypes with risk of T2DM and its complications were often inconclusive, thus spurring the present study.Methods:Meta-analysis of 25 studies for evaluating the role of GSTM1/GSTT1 null polymorphisms in determining the risk for T2DM and 17 studies for evaluating the role of GSTM1/GSTT1 null polymorphisms in development of T2DM related complications were conducted.Results:Our study revealed an association between GSTM1 and GSTT1 null polymorphism with T2DM (GSTM1; OR=1.37;95% CI =1.10-1.70 and GSTT1; OR=1.29;95% CI =1.04-1.61) with an amplified risk of 2.02 fold for combined GSTM1-GSTT1 null genotypes. Furthermore, the GSTT1 null (OR=1.56;95%CI=1.38-1.77) and combined GSTM1-GSTT1 null genotypes (OR=1.91;95%CI=1.25- 2.94) increased the risk for development of T2DM related complications, but not the GSTM1 null genotype. Stratified analyses based on ethnicity revealed GSTM1 and GSTT1 null genotypes increase the risk for T2DM in both Caucasians and Asians, with Asians showing much higher risk of T2DM complications than Caucasians for the same. </P><P> Discussion: GSTM1, GSTT1 and combined GSTM1-GSTT1 null polymorphism may be associated with increased risk for T2DM; while GSTT1 and combined GSTM1-GSTT1 null polymorphism may increase the risk of subsequent development of T2DM complications with Asian population carrying an amplified risk for the polymorphism.Conclusion:Thus GSTM1 and GSTT1 null genotypes increases the risk for Type 2 diabetes mellitus alone, in combination or with regards to ethnicity.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Elisa Benetti ◽  
Fausto Chiazza ◽  
Nimesh S. A. Patel ◽  
Massimo Collino

The combination of obesity and type 2 diabetes is a serious health problem, which is projected to afflict 300 million people worldwide by 2020. Both clinical and translational laboratory studies have demonstrated that chronic inflammation is associated with obesity and obesity-related conditions such as insulin resistance. However, the precise etiopathogenetic mechanisms linking obesity to diabetes remain to be elucidated, and the pathways that mediate this phenomenon are not fully characterized. One of the most recently identified signaling pathways, whose activation seems to affect many metabolic disorders, is the “inflammasome,” a multiprotein complex composed of NLRP3 (nucleotide-binding domain and leucine-rich repeat protein 3), ASC (apoptosis-associated speck-like protein containing a CARD), and procaspase-1. NLRP3 inflammasome activation leads to the processing and secretion of the proinflammatory cytokines interleukin- (IL-) 1βand IL-18. The goal of this paper is to review new insights on the effects of the NLRP3 inflammasome activation in the complex mechanisms of crosstalk between different organs, for a better understanding of the role of chronic inflammation in metabolic disease pathogenesis. We will provide here a perspective on the current research on NLRP3 inflammasome, which may represent an innovative therapeutic target to reverse the detrimental metabolic consequences of the metabolic inflammation.


2021 ◽  
Vol 80 (2) ◽  
pp. 125-132
Author(s):  
Grațiela Grădișteanu Pîrcălăbioru ◽  
Mariana-Carmen Chifiriuc ◽  
Roxana Adriana Stoica

Interaction of microorganisms with the host innate immune system is a crucial factor that could modify diabetes and its associated complications. Recent reports have elucidated the role of NLRP3 inflammasome in diabetes, but to our knowledge there is no data regarding the role of other inflammasomes in diabetes-induced inflammation. To investigate this, blood samples were collected from type 2 diabetes (T2DM) patients with nephropathy as well as from healthy volunteers. After red blood cell lysis, RNA was isolated from all collected blood samples. The expression of NLRP 6, NLRP3, ASC, PRO-IL1Β, and PRO-IL18 was assessed by quantitative Real Time PCR (qRT-PCR). Patients with diabetic nephropathy showed higher NLRP3 inflammasome expression compared to healthy controls whereas no significant differences were observed in case of NLRP6 inflammasome. In addition, Pentraxin 3 expression was elevated in patients with diabetic nephropathy. A detailed analysis of the patient’s clinical data revealed the fact that subjects receiving sevelamer carbonate in their treatment plan harboured low expression of Pentraxin 3 (PTX3) and NLRP3 associated genes.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Yang Zhang ◽  
Weifang Liu ◽  
Yanqi Zhong ◽  
Qi Li ◽  
Mengying Wu ◽  
...  

NOD-like receptor family, pyrin domain-containing protein 3 (NLRP3) inflammasome-mediated pyroptosis is a crucial event in the preeclamptic pathogenesis, tightly linked with the uteroplacental TLR4/NF-κB signaling. Trophoblastic glycometabolism reprogramming has now been noticed in the preeclampsia pathogenesis, plausibly modulated by the TLR4/NF-κB signaling as well. Intriguingly, cellular pyroptosis and metabolic phenotypes may be inextricably linked and interacted. Metformin (MET), a widely accepted NF-κB signaling inhibitor, may have therapeutic potential in preeclampsia while the underlying mechanisms remain unclear. Herein, we investigated the role of MET on trophoblastic pyroptosis and its relevant metabolism reprogramming. The safety of pharmacologic MET concentration to trophoblasts was verified at first, which had no adverse effects on trophoblastic viability. Pharmacological MET concentration suppressed NLRP3 inflammasome-induced pyroptosis partly through inhibiting the TLR4/NF-κB signaling in preeclamptic trophoblast models induced via low-dose lipopolysaccharide. Besides, MET corrected the glycometabolic reprogramming and oxidative stress partly via suppressing the TLR4/NF-κB signaling and blocking transcription factor NF-κB1 binding on the promoter PFKFB3, a potent glycolytic accelerator. Furthermore, PFKFB3 can also enhance the NF-κB signaling, reduce NLRP3 ubiquitination, and aggravate pyroptosis. However, MET suppressed pyroptosis partly via inhibiting PFKFB3 as well. These results provided that the TLR4/NF-κB/PFKFB3 pathway may be a novel link between metabolism reprogramming and NLRP3 inflammasome-induced pyroptosis in trophoblasts. Further, MET alleviates the NLRP3 inflammasome-induced pyroptosis, which partly relies on the regulation of TLR4/NF-κB/PFKFB3-dependent glycometabolism reprogramming and redox disorders. Hence, our results provide novel insights into the pathogenesis of preeclampsia and propose MET as a potential therapy.


Author(s):  
Siphosethu Cassandra Maphumulo ◽  
Etheresia Pretorius

AbstractType 2 diabetes mellitus (T2DM) is a multifactorial chronic metabolic disease characterized by chronic hyperglycemia due to insulin resistance and a deficiency in insulin secretion. The global diabetes pandemic relates primarily to T2DM, which is the most prevalent form of diabetes, accounting for over 90% of all cases. Chronic low-grade inflammation, triggered by numerous risk factors, and the chronic activation of the immune system are prominent features of T2DM. Here we highlight the role of blood cells (platelets, and red and white blood cells) and vascular endothelial cells as drivers of systemic inflammation in T2DM. In addition, we discuss the role of microparticles (MPs) in systemic inflammation and hypercoagulation. Although once seen as inert by-products of cell activation or destruction, MPs are now considered to be a disseminated storage pool of bioactive effectors of thrombosis, inflammation, and vascular function. They have been identified to circulate at elevated levels in the bloodstream of individuals with increased risk of atherothrombosis or cardiovascular disease, two significant hallmark conditions of T2DM. There is also general evidence that MPs activate blood cells, express proinflammatory and coagulant effects, interact directly with cell receptors, and transfer biological material. MPs are considered major players in the pathogenesis of many systemic inflammatory diseases and may be potentially useful biomarkers of disease activity and may not only be of prognostic value but may act as novel therapeutic targets.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1552
Author(s):  
Maria Sebastian-Valverde ◽  
Giulio M. Pasinetti

As a consequence of the considerable increase in the human lifespan over the last century, we are experiencing the appearance and impact of new age-related diseases. The causal relationships between aging and an enhanced susceptibility of suffering from a broad spectrum of diseases need to be better understood. However, one specific shared feature seems to be of capital relevance for most of these conditions: the low-grade chronic inflammatory state inherently associated with aging, i.e., inflammaging. Here, we review the molecular and cellular mechanisms that link aging and inflammaging, focusing on the role of the innate immunity and more concretely on the nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, as well as how the chronic activation of this inflammasome has a detrimental effect on different age-related disorders.


2020 ◽  
Vol 27 (15) ◽  
pp. 1617-1626 ◽  
Author(s):  
Roshni Joshi ◽  
S Goya Wannamethee ◽  
Jorgen Engmann ◽  
Tom Gaunt ◽  
Deborah A Lawlor ◽  
...  

Aims Elevated low-density lipoprotein cholesterol (LDL-C) is a risk factor for cardiovascular disease; however, there is uncertainty about the role of total triglycerides and the individual triglyceride-containing lipoprotein sub-fractions. We measured 14 triglyceride-containing lipoprotein sub-fractions using nuclear magnetic resonance and examined associations with coronary heart disease and stroke. Methods Triglyceride-containing sub-fraction measures were available in 11,560 participants from the three UK cohorts free of coronary heart disease and stroke at baseline. Multivariable logistic regression was used to estimate the association of each sub-fraction with coronary heart disease and stroke expressed as the odds ratio per standard deviation increment in the corresponding measure. Results The 14 triglyceride-containing sub-fractions were positively correlated with one another and with total triglycerides, and inversely correlated with high-density lipoprotein cholesterol (HDL-C). Thirteen sub-fractions were positively associated with coronary heart disease (odds ratio in the range 1.12 to 1.22), with the effect estimates for coronary heart disease being comparable in subgroup analysis of participants with and without type 2 diabetes, and were attenuated after adjustment for HDL-C and LDL-C. There was no evidence for a clear association of any triglyceride lipoprotein sub-fraction with stroke. Conclusions Triglyceride sub-fractions are associated with increased risk of coronary heart disease but not stroke, with attenuation of effects on adjustment for HDL-C and LDL-C.


Author(s):  
Xinxu Yuan ◽  
Owais M. Bhat ◽  
Arun Samidurai ◽  
Anindita Das ◽  
Yang Zhang ◽  
...  

Recent studies reported that vascular endothelial cells (ECs) secrete NLR family pyrin domain-containing 3 (NLRP3) inflammasome products such as interleukin-1β (IL-1β) via extracellular vesicles (EVs) under various pathological conditions. EVs represent one of the critical mechanisms mediating the cell-to-cell communication between ECs and vascular smooth muscle cells (VSMCs). However, whether or not the inflammasome-dependent EVs directly participate in the regulation of VSMC function remains unknown. In the present study, we found that in cultured carotid ECs, atherogenic stimulation by oxysterol 7-ketocholesterol (7-Ket) induced NLRP3 inflammasome formation and activation, reduced lysosome-multivesicular bodies (MVBs) fusion, and increased secretion of EVs that contain inflammasome product IL-1β. These EC-derived IL-1β-containing EVs promoted synthetic phenotype transition of co-cultured VSMCs, whereas EVs from unstimulated ECs have the opposite effects. Moreover, acid ceramidase (AC) deficiency or lysosome inhibition further exaggerated the 7-Ket-induced release of IL-1β-containing EVs in ECs. Using a Western diet (WD)-induced hypercholesterolemia mouse model, we found that endothelial-specific AC gene knockout mice (Asah1fl/fl/ECCre) exhibited augmented WD-induced EV secretion with IL-1β and more significantly decreased the interaction of MVBs with lysosomes in the carotid arterial wall compared to their wild-type littermates (WT/WT). The endothelial AC deficiency in Asah1fl/fl/ECCre mice also resulted in enhanced VSMC phenotype transition and accelerated neointima formation. Together, these results suggest that NLRP3 inflammasome-dependent IL-1β production during hypercholesterolemia promotes VSMC phenotype transition to synthetic status via EV machinery, which is controlled by lysosomal AC activity. Our findings provide novel mechanistic insights into understanding the pathogenic role of endothelial NLRP3 inflammasome in vascular injury through EV-mediated EC-to-VSMC regulation.


2020 ◽  
Vol 21 (22) ◽  
pp. 8437
Author(s):  
Jae-Sung Kim ◽  
Seok-Jun Mun ◽  
Euni Cho ◽  
Donggyu Kim ◽  
Wooic Son ◽  
...  

Dense granule proteins (GRAs) are essential components in Toxoplasma gondii, which are suggested to be promising serodiagnostic markers in toxoplasmosis. In this study, we investigated the function of GRA9 in host response and the associated regulatory mechanism, which were unknown. We found that GRA9 interacts with NLR family pyrin domain containing 3 (NLRP3) involved in inflammation by forming the NLRP3 inflammasome. The C-terminal of GRA9 (GRA9C) is essential for GRA9–NLRP3 interaction by disrupting the NLRP3 inflammasome through blocking the binding of apoptotic speck-containing (ASC)-NLRP3. Notably, Q200 of GRA9C is essential for the interaction of NLRP3 and blocking the conjugation of ASC. Recombinant GRA9C (rGRA9C) showed an anti-inflammatory effect and the elimination of bacteria by converting M1 to M2 macrophages. In vivo, rGRA9C increased the anti-inflammatory and bactericidal effects and subsequent anti-septic activity in CLP- and E. coli- or P. aeruginosa-induced sepsis model mice by increasing M2 polarization. Taken together, our findings defined a role of T. gondii GRA9 associated with NLRP3 in host macrophages, suggesting its potential as a new candidate therapeutic agent for sepsis.


Sign in / Sign up

Export Citation Format

Share Document