Variation in Root Density along Stream Banks

Author(s):  
Theresa Wynn ◽  
Saied Mostaghimi ◽  
Adrian Harpold ◽  
Marc Henderson ◽  
Leigh-Anne Henry
Keyword(s):  
2010 ◽  
Vol 61 (1) ◽  
pp. 1-13 ◽  
Author(s):  
B. H. KUSUMO ◽  
M. J. HEDLEY ◽  
C. B. HEDLEY ◽  
G. C. ARNOLD ◽  
M. P. TUOHY

1992 ◽  
Vol 22 (11) ◽  
pp. 1575-1582 ◽  
Author(s):  
Adrián Ares ◽  
Norman Peinemann

A study was conducted to determine the amounts and vertical distribution of fine roots <2 mm as a function of site quality in a temperate, hilly zone of Argentina. Fine roots were sampled in autumn from 0.2-ha plots established in 12 coniferous plantations of Pinushalepensis Mill., Pinusradiata D. Don, Cedrusdeodara (D. Don) G. Don, and Cupressussempervirens L.f. horizontalis, located in Sierra de la Ventana, southern Buenos Aires. Generally, root density was found to be higher under low-growth stands. The distance from a tree sometimes had an effect on root density, but no clear pattern within stands could be observed. Root density commonly decreased with depth, but slight irregularities in some profiles were observed. Site quality and soil type influenced root distribution. Belowground biomass up to a depth of 50 cm ranged from 1600 to 9800 kg•ha−1 in high-growth stands and from 5400 to 40 700 kg•ha−1 in low-growth stands. Soil organic matter content provided the best correlation with root density. A possible practical implication would be the use of indices related to vertical distribution of organic matter, among other variables, as complementary estimators of effective depth of rooting. The results strongly suggest that trees maintain a large fine-root system in poor sites at the expense of aboveground growth.


2011 ◽  
Vol 63 (4) ◽  
pp. 1167-1171 ◽  
Author(s):  
Ljiljana Prokic ◽  
Radmila Stikic

The effects of drought and partial root drying (PRD) on shoot and root growth was assessed in the wild type Ailsa Craig (WT) and the flacca tomato mutant deficient in the plant hormone ABA. Our results show that drought had an inhibitory effect on shoot growth in flacca and especially in WT; the most profound effect was observed in FI (full irrigation), then PRD and the smallest in D plants. Root development in both WT and flacca was stimulated after the 3rd day of the experiment following a decrease in the soil water content. On the 11th day of the experiment, when the soil water content was reduced by about 50% of full irrigation (FI), the root density was increased in the drying part of the PDR and on both sides of the drought treatment. On the basis of these results it can be assumed that increased root density and root length represent an adaptation or root adjustment to drought conditions.


2021 ◽  
Author(s):  
Konrad Greinwald ◽  
Tobias Gebauer ◽  
Ludwig Treuter ◽  
Victoria Kolodziej ◽  
Alessandra Musso ◽  
...  

Abstract Aims The stability of hillslopes is an essential ecosystem service, especially in alpine regions with soils prone to erosion. One key variable controlling hillslope stability is soil aggregate stability. We aimed at identifying dominant controls of vegetation parameters on aggregate stability and analysed their importance for soil aggregate stability during landscape development. Methods We quantified the aggregate stability coefficient (ASC) and measured plant cover, diversity, root mass and root length, density (RMD, RLD) along two chronosequences with contrasting bedrocks (siliceous, calcareous) in the Swiss Alps. Results We found that ASC developed slower along the calcareous chronosequence. Furthermore, we observed a significant positive effect of vegetation cover and diversity on ASC that was mediated via root density. These relationships developed in a time-depended manner: At young terrain ages, vegetation parameters had a strong effect on aggregate stability compared to older stages. Moreover, RLD was the most powerful predictor of ASC on young terrain, whereas on older moraines RMD became more important. Conclusions We highlight that root density plays a major role in governing ASC for soils differing in moraine ages. The changing importances of RLD and RMD for ASC development suggest different mechanistic linkages between vegetation and hillsope stability during landscape development.


1975 ◽  
Vol 23 (2) ◽  
pp. 131-138
Author(s):  
H. Van Keulen ◽  
N.G. Seligman ◽  
J. Goudriaan

Analysis of anion transport to the root of an actively growing plant with a normally dense root system showed that virtually the whole of the anion store in the rooting zone is available to the plant within a few days at the most. Transport by diffusion only is enough to account for most of the depletion, but mass flow will speed up the process. The effect of mass flow will be considerable in soils with a high dispersion coefficient (loess), but very small in soils with a low dispersion coefficient (clay and sand). A rule is proposed to determine whether a given root density is sufficient to supply the nitrogen and water needs of the plant by diffusion only. (Abstract retrieved from CAB Abstracts by CABI’s permission)


Weed Science ◽  
2013 ◽  
Vol 61 (2) ◽  
pp. 319-327 ◽  
Author(s):  
Deborah Britschgi ◽  
Peter Stamp ◽  
Juan M. Herrera

Competition between crops and weeds may be stronger at the root than at the shoot level, but belowground competition remains poorly understood, due to the lack of suitable methods for root discrimination. Using a transgenic maize line expressing green fluorescent protein (GFP), we nondestructively discriminated maize roots from weed roots. Interactions between GFP-expressing maize, common lambsquarters, and redroot pigweed were studied in two different experiments with plants arranged in rows at a higher plant density (using boxes with a surface area of 0.09 m2) and in single-plant arrangements (using boxes with a surface area of 0.48 m2). Root density was screened using minirhizotrons. Relative to maize that was grown alone, maize root density was reduced from 41 to 87% when it was grown with redroot pigweed and from 27 to 73% when it was grown with common lambsquarters compared to maize grown alone. The calculated root : shoot ratios as well as the results of shoot dry weight and root density showed that both weed species restricted root growth more than they restricted shoot growth of maize. The effect of maize on the root density of the weeds ranged from a reduction of 25% to an increase of 23% for common lambsquarters and a reduction of 42 to 6% for redroot pigweed. This study constitutes the first direct quantification of root growth and distribution of maize growing together with weeds. Here we demonstrate that the innovative use of transgenic GFP-expressing maize combined with the minirhizotron technique offers new insights on the nature of the response of major crops to belowground competition with weeds.


Sign in / Sign up

Export Citation Format

Share Document