Dependence Structures of Soil Parameters in Sandy Clay

Author(s):  
Rongjie He ◽  
Chenglong Wu ◽  
Xinfu Xing ◽  
Jinhui Li
2017 ◽  
Vol 14 (1) ◽  
pp. 53
Author(s):  
Arwan Apriyono ◽  
Sumiyanto Sumiyanto ◽  
Nanang Gunawan Wariyatno

Gunung Tugel is an area that located Patikraja Region, Southern Banyumas. Thetopography of the area is mostly mountainous with a slope that varies from flat to steep. Thiscondition makes to many areas of this region potentially landslide. In 2015, a landslideoccurred in Jalan Gunung Tugel. The Landslide occurred along 70 meters on the half of theroad and causing traffic Patikraja-Purwokerto disturbed. To repair the damage of the road andavoid further landslides, necessary to analyze slope stability. This study is to analyze landslidereinforcement that occurred at Gunung Tugel and divides into 3 step. The first step is fieldinvestigation to determine the condition of the location and dimensions of landslides. Thesecond step is to know the soil parameters and analyzes data were obtained from the field. Andthe final step is analyzed of the landslide reinforcement by using data obtained from thepreceding step. In this research, will be applied three variations of reinforcement i.e. retainingwall, pile foundation and combine both of pile foundations and retaining wall. Slope stabilityanalysis was conducted using limit equilibrium method. Based on the analysis conducted onthe three variations reinforcement, combine both of pile foundations and retaining wall morerecommended. Application of and combine both of pile foundations and retaining wall is themost realistic option in consideration of ease of implementation at the field. From thecalculations have been done, in order to achieve stable conditions need retaining wall withdimensions of 2 meters high with 2,5 meters of width. DPT is supported by two piles of eachcross-section with 0.3 meters of diameter along 10 meters with 1-meter in space. Abstrak: Gunung Tugel adalah salah satu daerah yang terletak di Kecamatan PatikrajaKabupaten Banyumas bagian selatan. Kondisi topografi daerah tersebut sebagian besar berupapegunungan dengan kemiringan yang bervariasi dari landai sampai curam. Hal inimenyebabkan banyak daerah di wilayah Gunung Tugel yang berpotensi terjadi bencana tanahlongsor. Pada tahun 2015, peristiwa longsor kembali terjadi di ruas Jalan Gunung Tugel.Kelongsoran yang terjadi sepanjang 70 meter pada separuh badan jalan tersebut menyebabkanarus lalu lintas patikraja-purwokerto menjadi terganggu. Untuk memperbaiki kerusakan jalandan mencegah kelongsoran kembali, diperlukan analisis perkuatan tanah terhadap lerengtersebut. Studi analisis penanggulangan kelongsoran jalan yang terjadi di Gunung Tugel inidilakukan dengan tiga tahapan. Tahapan pertama adalah investigasi lapangan untukmengetahui kondisi lokasi dan dimensi longsor serta mengambil sampel tanah di lapangan.Tahap kedua adalah melakukan pengujian parameter tanah dan analisis data yang diperolehdari lapangan. Tahapan yang terakhir adalah analisis penanggulangan longsor denganmenggunakan data yang diperoleh dari tahapan sebelumnya. Pada penelitan ini, akanditerapkan tiga variasi perkuatan lereng yaitu dinding penahan tanah (DPT), turap dan DPTyang dikombinasikan dengan pondasi tiang. Analisis stabilitas lereng dilakukan dengan metodekeseimbangan batas. Berdasarkan hasil analisis yang dilakukan terhadap ketiga variasiperkuatan, DPT dengan kombinasi tiang pancang lebih direkomendasikan. Penerapan DPTyang dikombinasikan dengan minipile merupakan pilihan yang paling realistis denganpertimbangan tingkat kemudahan pelaksanaan di lapangan. Dari perhitungan yang telahdilakukan, untuk mencapai kondisi stabil diperlukan DPT dengan dimensi tinggi 2 meterdengan lebar bawah 2,5 meter. DPT tersebut ditopang oleh dua tiang tiap penampangmelintang dengan diameter 0,3 meter sepanjang 10 meter dengan jarak antar tiang 1 meter.kata kunci: tanah longsor, perkuatan tanah, metode keseimbangan batas


Author(s):  
Vladislav Sh. Shagapov ◽  
Ismagilyan G. Khusainov ◽  
Emiliya V. Galiakbarova ◽  
Zulfya R. Khakimova

This article studies the process of relaxation of the pressure in a tank with the damaged area of the wall after pressure-testing. The authors use different methods for the diagnosis of the technical condition of objects of petroleum products storage. Pressure testing is one of nondestructive methods. The rate of pressure decrease is characteristic of the system tightness. This article studies the cases of ground and underground location of the tank. Pressure testing involves excess pressure inside of a tank and observing its decrease. Over time, one can assess the integrity of the system. This has required creating mathematical models to account the filtration of the liquid depending on the location of the tank. The results include the analytical solution of the task and the formulas for describing the dependence of the relaxation time of pressure in the tank from the liquid and soil parameters, geometry of the tank, and the damaged portion of the wall. The two- and three-dimensional cases of liquids filtration for the case of underground location of the tank were considered. The results of some numerical calculations of the dependence of reduction time and the time of half-life pressure from the area of the damaged portion of the wall were shown. The obtained solutions allow assessing the extent of the damaged area by the pressure testing with known values of tank, liquid, and soil.


2020 ◽  
Vol 8 (6) ◽  
pp. 1038-1041
Author(s):  
C Bharathi ◽  
P Murali Arthanari ◽  
C Chinnusamy

2018 ◽  
Vol 251 ◽  
pp. 04040
Author(s):  
Zaven Ter-Martirosyan ◽  
Ivan Luzin

The article presents the results of a comprehensive research of the dynamic impacts on a modified base. The modified base was obtained as a result of compensatory injection at the experimental site for the accident recovery at the hydraulic engineering structure. The complex study of the dynamic impacts includes special laboratory tests to determine the soil parameters, the finite element analysis of the experimental site, taking into account the dynamic properties, the selection of the necessary equipment for field experiments based on the numerical solution results, a full-scale experiment with the measurement of the foundation sediments of the experimental site.


Soil Research ◽  
2019 ◽  
Vol 57 (8) ◽  
pp. 814 ◽  
Author(s):  
Arkadiusz Telesiński ◽  
Teresa Krzyśko-Łupicka ◽  
Krystyna Cybulska ◽  
Barbara Pawłowska ◽  
Robert Biczak ◽  
...  

This study used laboratory experiments to compare the effects of coal tar creosote on the activity of oxidoreductive enzymes in sandy loam, loamy sand and sandy clay loam soils. Different amounts of coal tar creosote were added to soil samples as follows: 0 (control), 2, 10 or 50 g kg–1 dry matter. The activity of soil dehydrogenases (DHAs), o-diphenol oxidase (o-DPO), catalase (CAT), nitrate reductase (NR) and peroxidases (POX) was determined. Contamination of soil with coal tar creosote affected oxidoreductase activity. Oxidoreductive enzyme activity following soil contamination with coal tar creosote was in the following order: DHAs > CAT > NR > POX > o-DPO in loamy sand and in sandy loam; and DHAs > POX > CAT > NR > o-DPO in sandy clay loam. The index of soil oxidoreductive activity (IOx) introduced in this study confirms the negative effect of coal tar creosote on oxidoreductase activity in soil. DHAs were the most sensitive to the contamination of soil with coal tar creosote. Moreover, the greatest changes in oxidoreductase activities were observed in loamy sand. Knowledge of the mechanism underlying the effects of coal tar creosote on oxidoreductive processes may enable development of a method for the bioremediation of polycyclic aromatic hydrocarbon-contaminated soils.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jacob R. Schaperow ◽  
Dongyue Li ◽  
Steven A. Margulis ◽  
Dennis P. Lettenmaier

AbstractHydrologic models predict the spatial and temporal distribution of water and energy at the land surface. Currently, parameter availability limits global-scale hydrologic modelling to very coarse resolution, hindering researchers from resolving fine-scale variability. With the aim of addressing this problem, we present a set of globally consistent soil and vegetation parameters for the Variable Infiltration Capacity (VIC) model at 1/16° resolution (approximately 6 km at the equator), with spatial coverage from 60°S to 85°N. Soil parameters derived from interpolated soil profiles and vegetation parameters estimated from space-based MODIS measurements have been compiled into input files for both the Classic and Image drivers of the VIC model, version 5. Geographical subsetting codes are provided, as well. Our dataset provides all necessary land surface parameters to run the VIC model at regional to global scale. We evaluate VICGlobal’s ability to simulate the water balance in the Upper Colorado River basin and 12 smaller basins in the CONUS, and their ability to simulate the radiation budget at six SURFRAD stations in the CONUS.


Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 252
Author(s):  
Tingting Duan ◽  
Jing Zhang ◽  
Zhengjun Wang

Grassland tourism is a very popular leisure activity in many parts of the world. However, the presence of people in these areas causes disturbance to the local environment and grassland resources. This study analyzes the composition, diversity, and productivity under different levels of disturbance of the plant communities in the Kangxi Grassland Tourist Area and the Yeyahu Wetland Nature Reserve of Beijing, China. It aims to identify indicators of plant communities and their responses to different levels of disturbance. Our analysis shows that the plant community density and coverage have a certain compensatory increase under disturbed conditions. With the increase in disturbances, more drought-tolerant species have appeared (increased by 5.7%), some of which have become the grazing-tolerance indicator species in the trampled grazed area (TGA). For plant community productivity, biomass and height are good indicators for distinguishing different disturbances (p < 0.05). In addition, several diversity indices reveal the change of plant communities from different perspectives (three of the four indices were significant at the p < 0.05 level). For soil parameters, soil water content and organic matter concentration help to indicate different disturbance levels (the former has a 64% change). Moreover, the standard deviation of the plant community and soil parameters is also a good indicator of their spatial variability and disturbance levels, especially for the TGA. Our analysis confirms that the indicators of productivity, diversity, and soil parameters can indicate the disturbance level in each subarea from different perspectives. However, under disturbed conditions, a comprehensive analysis of these indicators is needed before we can accurately understand the state of health of the plant community.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 738
Author(s):  
Nicola Rossi ◽  
Mario Bačić ◽  
Meho Saša Kovačević ◽  
Lovorka Librić

The design code Eurocode 7 relies on semi-probabilistic calculation procedures, through utilization of the soil parameters obtained by in situ and laboratory tests, or by the means of transformation models. To reach a prescribed safety margin, the inherent soil parameter variability is accounted for through the application of partial factors to either soil parameters directly or to the resistance. However, considering several sources of geotechnical uncertainty, including the inherent soil variability, measurement error and transformation uncertainty, full probabilistic analyses should be implemented to directly consider the site-specific variability. This paper presents the procedure of developing fragility curves for levee slope stability and piping as failure mechanisms that lead to larger breaches, where a direct influence of the flood event intensity on the probability of failure is calculated. A range of fragility curve sets is presented, considering the variability of levee material properties and varying durations of the flood event, thus providing crucial insight into the vulnerability of the levee exposed to rising water levels. The procedure is applied to the River Drava levee, a site which has shown a continuous trend of increased water levels in recent years.


Sign in / Sign up

Export Citation Format

Share Document