Purification of Radioactive Ion Beams by Photodetachment in a RF Quadrupole Ion Beam Cooler

Author(s):  
Y. Liu ◽  
C. C. Havener ◽  
T. L. Lewis ◽  
A. Galindo-Uribarri ◽  
J. R. Beene ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2864
Author(s):  
Eva Kröll ◽  
Miriana Vadalà ◽  
Juliana Schell ◽  
Simon Stegemann ◽  
Jochen Ballof ◽  
...  

Highly porous yttrium oxide is fabricated as ion beam target material in order to produce radioactive ion beams via the Isotope Separation On Line (ISOL) method. Freeze casting allows the formation of an aligned pore structure in these target materials to improve the isotope release. Aqueous suspensions containing a solid loading of 10, 15, and 20 vol% were solidified with a unidirectional freeze-casting setup. The pore size and pore structure of the yttrium oxide freeze-casts are highly affected by the amount of solid loading. The porosity ranges from 72 to 84% and the crosslinking between the aligned channels increases with increasing solid loading. Thermal aging of the final target materials shows that an operation temperature of 1400 °C for 96 h has no significant effect on the microstructure. Thermo-mechanical calculation results, based on a FLUKA simulation, are compared to measured compressive strength and forecast the mechanical integrity of the target materials during operation. Even though they were developed for the particular purpose of the production of short-lived radioactive isotopes, the yttria freeze-cast scaffolds can serve multiple other purposes, such as catalyst support frameworks or high-temperature fume filters.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Ulrika Jakobsson ◽  
Ermei Mäkilä ◽  
Anu J. Airaksinen ◽  
Osku Alanen ◽  
Asenath Etilé ◽  
...  

Mesoporous silicon (PSi) is biocompatible and tailorable material with high potential in drug delivery applications. Here, we report of an evaluation of PSi as a carrier platform for theranostics by delivering a radioactive ion beam- (RIB-) based radioactive lanthanoid into tumors in a mouse model of prostate carcinoma. Thermally hydrocarbonized porous silicon (THCPSi) wafers were implanted with 159Dy at the facility for radioactive ion beams ISOLDE located at CERN, and the resulting [159Dy]THCPSi was postprocessed into particles. The particles were intratumorally injected into mice bearing prostate cancer xenografts. The stability of the particles was studied in vivo, followed by ex vivo biodistribution and autoradiographic studies. We showed that the process of producing radionuclide-implanted PSi particles is feasible and that the [159Dy]THCPSi particles stay stable and local inside the tumor over seven days. Upon release of 159Dy from the particles, the main site of accumulation is in the skeleton, which is in agreement with previous studies on the biodistribution of dysprosium. We conclude that THCPSi particles are a suitable platform together with RIB-based radiolanthanoids for theranostic purposes as they are retained after administration inside the tumor and the radiolanthanoid remains embedded in the THCPSi.


2019 ◽  
Vol 22 ◽  
pp. 10
Author(s):  
M. Veselsky ◽  
J. Klimo ◽  
N. Vujisicova ◽  
G. A. Souliotis

Opportunities for investigations of nuclear reactions at the future nuclear physics facilities such as radioactive ion beam facilities and high-power laser facilities are considered. Post-accelerated radioactive ion beams offer possibilities for study of the role of isospin asymmetry in the reaction mechanisms at various beam energies. Fission barrier heights of neutron-deficient nuclei can be directly determined at low energies. Post-accelerated radioactive ion beams, specifically at the future facilities such as HIE-ISOLDE, SPIRAL-2 or RAON-RISP can be also considered as a candidate for production of very neutron-rich nuclei via mechanism of multi-nucleon transfer. High-power laser facilities such as ELI-NP offer possibilities for nuclear reaction studies with beams of unprecedented properties. Specific cases such as ternary reactions or even production of super-heavy elements are considered.


Author(s):  
John F. Walker ◽  
J C Reiner ◽  
C Solenthaler

The high spatial resolution available from TEM can be used with great advantage in the field of microelectronics to identify problems associated with the continually shrinking geometries of integrated circuit technology. In many cases the location of the problem can be the most problematic element of sample preparation. Focused ion beams (FIB) have previously been used to prepare TEM specimens, but not including using the ion beam imaging capabilities to locate a buried feature of interest. Here we describe how a defect has been located using the ability of a FIB to both mill a section and to search for a defect whose precise location is unknown. The defect is known from electrical leakage measurements to be a break in the gate oxide of a field effect transistor. The gate is a square of polycrystalline silicon, approximately 1μm×1μm, on a silicon dioxide barrier which is about 17nm thick. The break in the oxide can occur anywhere within that square and is expected to be less than 100nm in diameter.


Author(s):  
Mark Denker ◽  
Jennifer Wall ◽  
Mark Ray ◽  
Richard Linton

Reactive ion beams such as O2+ and Cs+ are used in Secondary Ion Mass Spectrometry (SIMS) to analyze solids for trace impurities. Primary beam properties such as energy, dose, and incidence angle can be systematically varied to optimize depth resolution versus sensitivity tradeoffs for a given SIMS depth profiling application. However, it is generally observed that the sputtering process causes surface roughening, typically represented by nanometer-sized features such as cones, pits, pyramids, and ripples. A roughened surface will degrade the depth resolution of the SIMS data. The purpose of this study is to examine the relationship of the roughness of the surface to the primary ion beam energy, dose, and incidence angle. AFM offers the ability to quantitatively probe this surface roughness. For the initial investigations, the sample chosen was <100> silicon, and the ion beam was O2+.Work to date by other researchers typically employed Scanning Tunneling Microscopy (STM) to probe the surface topography.


1991 ◽  
Vol 223 ◽  
Author(s):  
Richard B. Jackman ◽  
Glenn C. Tyrrell ◽  
Duncan Marshall ◽  
Catherine L. French ◽  
John S. Foord

ABSTRACTThis paper addresses the issue of chlorine adsorption on GaAs(100) with respect to the mechanisms of thermal and ion-enhanced etching. The use of halogenated precursors eg. dichloroethane is also discussed in regard to chemically assisted ion beam etching (CAIBE).


2013 ◽  
Vol T152 ◽  
pp. 014011 ◽  
Author(s):  
Karlheinz Langanke ◽  
Hendrik Schatz

2004 ◽  
Vol 22 (1) ◽  
pp. 19-24 ◽  
Author(s):  
F. PEGORARO ◽  
S. ATZENI ◽  
M. BORGHESI ◽  
S. BULANOV ◽  
T. ESIRKEPOV ◽  
...  

Energetic ion beams are produced during the interaction of ultrahigh-intensity, short laser pulses with plasmas. These laser-produced ion beams have important applications ranging from the fast ignition of thermonuclear targets to proton imaging, deep proton lithography, medical physics, and injectors for conventional accelerators. Although the basic physical mechanisms of ion beam generation in the plasma produced by the laser pulse interaction with the target are common to all these applications, each application requires a specific optimization of the ion beam properties, that is, an appropriate choice of the target design and of the laser pulse intensity, shape, and duration.


1983 ◽  
Vol 23 ◽  
Author(s):  
G.J. Galvin ◽  
L.S. Hung ◽  
J.W. Mayer ◽  
M. Nastasi

ABSTRACTEnergetic ion beams used outside the traditional role of ion implantation are considered for semiconductor applications involving interface modification for self-aligned silicide contacts, composition modification for formation of buried oxide layers in Si on insulator structures and reduced disorder in high energy ion beam annealing for buried collectors in transistor fabrication. In metals, aside from their use in modification of the composition of near surface regions, energetic ion beams are being investigated for structural modification in crystalline to amorphous transitions. Pulsed beams of photons and electrons are used as directed energy sources in rapid solidification. Here, we consider the role of temperature gradients and impurities in epitaxial growth of silicon.


Sign in / Sign up

Export Citation Format

Share Document