scholarly journals Phonon dispersion effects and the thermal conductivity reduction in GaAs/AlAs superlattices

2000 ◽  
Vol 88 (3) ◽  
pp. 1498-1503 ◽  
Author(s):  
W. E. Bies ◽  
R. J. Radtke ◽  
H. Ehrenreich
MRS Advances ◽  
2016 ◽  
Vol 1 (32) ◽  
pp. 2297-2302 ◽  
Author(s):  
Xiaonan Wang ◽  
Alireza Tabarraei

ABSTRACTWe have used reverse nonequlibrium molecular dynamics modeling to study the impact of uniaxial stretching on the thermal conductivity of monolayer molybdenum disulfide (MoS2) and hexagonal boron nitride (h-BN). Our results predict an anomalous response of the thermal conductivity of these materials to normal strain. Thermal conductivity of h-BN increases under a tensile strain whereas thermal conductivity of MoS2 remains fairly constant. These are in striking contrast to the impact of tensile strain on the thermal conductivity of three dimensional materials whose thermal conductivity decreases under tensile strain. We investigate the mechanism responsible for this unexpected behavior by studying the impact of tensile strain on the phonon dispersion curves and group velocities of these materials.


2019 ◽  
Author(s):  
Hui Yang ◽  
Jia-Yue Yang ◽  
Christopher Savory ◽  
Jonathan Skelton ◽  
Benjamin Morgan ◽  
...  

<div>LiCoO<sub>2</sub> is the prototype cathode in lithium ion batteries. It adopts a crystal structure with alternating Li<sup>+</sup> and CoO<sub>2</sub><sup>-</sup> layers along the hexagonal <0001> axis. It is well established that ionic and electronic conduction is highly anisotropic; however, little is known regarding heat transport. We analyse the phonon dispersion and lifetimes of LiCoO<sub>2</sub> using anharmonic lattice dynamics based on quantum chemical force constants. Around room temperature, the thermal conductivity in the hexagonal ab plane of the layered cathode is ≈ 6 times higher than that along the c axis based on the phonon Boltzmann transport. The low thermal conductivity (< 10Wm<sup>-1</sup>K<sup>-1</sup>) originates from a combination of short phonon lifetimes associated with anharmonic interactions between the octahedral face-sharing CoO<sub>2</sub><sup>-</sup> networks, as well as grain boundary scattering. The impact on heat management and thermal processes in lithium ion batteries based on layered positive electrodes is discussed.</div>


Science ◽  
2020 ◽  
Vol 367 (6475) ◽  
pp. 309-312 ◽  
Author(s):  
Yo Machida ◽  
Nayuta Matsumoto ◽  
Takayuki Isono ◽  
Kamran Behnia

Allotropes of carbon, such as diamond and graphene, are among the best conductors of heat. We monitored the evolution of thermal conductivity in thin graphite as a function of temperature and thickness and found an intimate link between high conductivity, thickness, and phonon hydrodynamics. The room-temperature in-plane thermal conductivity of 8.5-micrometer-thick graphite was 4300 watts per meter-kelvin—a value well above that for diamond and slightly larger than in isotopically purified graphene. Warming enhances thermal diffusivity across a wide temperature range, supporting partially hydrodynamic phonon flow. The enhancement of thermal conductivity that we observed with decreasing thickness points to a correlation between the out-of-plane momentum of phonons and the fraction of momentum-relaxing collisions. We argue that this is due to the extreme phonon dispersion anisotropy in graphite.


Author(s):  
Michael F. P. Bifano ◽  
Vikas Prakash

A core-shell elasticity model is employed to investigate the effect of a nanowire and nanotube’s increased surface moduli on specific heat, ballistic thermal conductance, and thermal conductivity as a function of temperature. Phonon confinement is analyzed using approximated phonon dispersion relations that result from solutions to the frequency equation of a vibrating rod and tube. The results indicate a maximum 10% decrease in lattice thermal conductivity and ballistic thermal conductance near 160 K for a 10 nm outer diameter nanotube with an inner diameter of 5 nm when the average Young’s Modulus of both the inner and outer free surfaces is increased by a factor of 1.53. In the presence of the acoustically stiffened surfaces, the specific heat of the nanotube is found to decrease by up to 20% at 160 K. Near room temperature, changes in thermal properties are less severe. In contrast, a 10 nm outer diameter nanowire composed of similar material exhibits up to a 12% maximum increase in thermal conductivity at 600 K, a 25% increase in ballistic thermal conductance at 400 K, and a 48% increase in specific heat at 470 K when its outer free surface is acoustically stiffened to the same degree. Our simplified model may be extended to investigate the acoustic tuning of nanowires and nanotubes by inducing surface stiffening or softening via appropriate surface chemical functionalization and coatings.


2006 ◽  
Vol 74 (15) ◽  
Author(s):  
T. C. Au Yeung ◽  
M. X. Gu ◽  
Chang Q. Sun ◽  
George C. K. Chen ◽  
D. W. K. Wong ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Lina Yang ◽  
Austin J. Minnich

Abstract Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials.


2013 ◽  
Vol 135 (9) ◽  
Author(s):  
Yaguo Wang ◽  
Bo Qiu ◽  
Alan J. H. McGaughey ◽  
Xiulin Ruan ◽  
Xianfan Xu

Thermal properties and transport control are important for many applications, for example, low thermal conductivity is desirable for thermoelectrics. Knowledge of mode-wise phonon properties is crucial to identify dominant phonon modes for thermal transport and to design effective phonon barriers for thermal transport control. In this paper, we adopt time-domain (TD) and frequency-domain (FD) normal-mode analyses to investigate mode-wise phonon properties and to calculate phonon dispersion relations and phonon relaxation times in bismuth telluride. Our simulation results agree with the previously reported data obtained from ultrafast time-resolved measurements. By combining frequency-dependent anharmonic phonon group velocities and lifetimes, mode-wise thermal conductivities are predicted to reveal the contributions of heat carriers with different wavelengths and polarizations.


Author(s):  
Koji Miyazaki ◽  
Daisuke Nagai ◽  
Yohei Kido ◽  
Hiroshi Tsukamoto

We carried out molecular dynamics simulations (MD) of heat conduction in Si with a nano-hole to represent the nano-structure, in order to investigate the mechanism of the thermal conductivity reduction of nano-structured materials. The Stillinger-Weber potential is used in this study. The temperature is kept constant at 300K by velocity scaling. Periodic boundary conditions are applied in the x, y and z directions. Phonon dispersion curves are calculated by using the time-space 2D Fourier transform. The phonon group velocity is calculated from the slope of the dispersion curve. The velocity is reduced by nano-holes, even if those are random. Phonon mean free path can be evaluated from the width of dispersion curve, and the long waves are clearly scattered by nano-holes. Phonon density of states (DOS) is also calculated by the Fourier transform of a velocity correlation. The DOS of Si with periodic nano-holes are slightly smaller than that of a single crystal Si. In other words, the specific heat is reduced by periodic nano-holes due to the reduced phonon modes. We discuss the mechanism of the reduction of the thermal conductivity of nano-porous material on the atomic scale.


Sign in / Sign up

Export Citation Format

Share Document