Experimental investigation of gas flow rate and electric field effect on refractive index and electron density distribution of cold atmospheric pressure-plasma by optical method, Moiré deflectometry

2018 ◽  
Vol 25 (4) ◽  
pp. 043516
Author(s):  
Mohammad Khanzadeh ◽  
Fatemeh Jamal ◽  
Mahdi Shariat
2019 ◽  
Vol 13 (4) ◽  
pp. 329-349 ◽  
Author(s):  
Maryam Hosseinpour ◽  
Akbar Zendehnam ◽  
Seyedeh Mehri Hamidi Sangdehi ◽  
Hamidreza Ghomi Marzdashti

Abstract In this study, the influences of variations in the gas flow rate and incidence angles of argon cold atmospheric-pressure plasma jet on the morphology and absorption spectra of silver thin films (60 nm, 80 nm, and 100 nm film thickness) are investigated. To evaluate the surface morphology, atomic force microscopy (AFM) was employed on the silver thin film surface before and after plasma processing. To analyze the effect of plasma treatment on the grain size, the one-dimensional AFM surface profiles of Ag thin films are approximated using a Gaussian function. The absorbance of Ag thin films is measured in wavelength range of 190–1100 nm utilizing UV–Vis absorption spectrometer. Compared to the gas flow rates 0.5 standard litter per minute (SLM) and 2 SLM, surface treatment of Ag thin film with gas flow rate of 1 SLM increased the valley depth, the peak valley height, and the distance between two deepest valleys remarkably. A sequential argon plasma treatment (2-min plasma treatment perpendicular to surface was followed by 2-min plasma processing with non-perpendicular incidence angle of 60°) offers considerable improvement in the uniformity of grains and also changes shape of grains, especially the peak height (about 44 times higher than untreated sample) and area of grains (almost 136 times greater than untreated sample) which can be applicable for optical sensing technology.


2021 ◽  
Author(s):  
Le Thi Quynh Xuan ◽  
Linh Nhat Nguyen ◽  
Nguyen Thuan Dao

Abstract Recently, cold atmospheric-pressure plasma has been studied extensively as an efficient and green method to synthesize gold nanoparticles (AuNPs). Although the characteristics of the AuNPs, especially their homogeneousness, depend very much on the plasma synthesis parameters, there is a lack of a study involving these parameters systematically. Moreover, most of AuNPs-cold-plasma synthesis reports so far either required organic capping agents or resulted in highly non-uniform AuNPs. In this work, we systematically study the effect of most important synthesis parameters– including distance from the plasma jet to the solution, gas flow rate, plasma rate, volume and concentration of the precursor, plasma interaction time as well as the effect of the synthesis environment (humidity and temperature) – on the uniformity of the AuNPs. Through various characterization measurements, we show that homogeneous and highly stable intrinsic AuNPs with an average size of 45 nm can be obtained with optimized synthesis parameters and in the absence of a stabilizer. The synthesized AuNPs yield advanced optical sensing properties in comparison with commercial AuNPs and can be further applied in developing versatile and high-sensitivity biosensors.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2931
Author(s):  
Soumya Banerjee ◽  
Ek Adhikari ◽  
Pitambar Sapkota ◽  
Amal Sebastian ◽  
Sylwia Ptasinska

Atmospheric pressure plasma (APP) deposition techniques are useful today because of their simplicity and their time and cost savings, particularly for growth of oxide films. Among the oxide materials, titanium dioxide (TiO2) has a wide range of applications in electronics, solar cells, and photocatalysis, which has made it an extremely popular research topic for decades. Here, we provide an overview of non-thermal APP deposition techniques for TiO2 thin film, some historical background, and some very recent findings and developments. First, we define non-thermal plasma, and then we describe the advantages of APP deposition. In addition, we explain the importance of TiO2 and then describe briefly the three deposition techniques used to date. We also compare the structural, electronic, and optical properties of TiO2 films deposited by different APP methods. Lastly, we examine the status of current research related to the effects of such deposition parameters as plasma power, feed gas, bias voltage, gas flow rate, and substrate temperature on the deposition rate, crystal phase, and other film properties. The examples given cover the most common APP deposition techniques for TiO2 growth to understand their advantages for specific applications. In addition, we discuss the important challenges that APP deposition is facing in this rapidly growing field.


Author(s):  
Kenneth A. Cornell ◽  
Amanda White ◽  
Adam Croteau ◽  
Jessica Carlson ◽  
Zeke Kennedy ◽  
...  

2021 ◽  
Vol 22 (11) ◽  
pp. 5548
Author(s):  
Yan Li ◽  
Tianyu Tang ◽  
Haejune Lee ◽  
Kiwon Song

Cold atmospheric pressure plasma (CAP) and plasma-activated medium (PAM) induce cell death in diverse cancer cells and may function as powerful anti-cancer agents. The main components responsible for the selective anti-cancer effects of CAP and PAM remain elusive. CAP or PAM induces selective cell death in hepatocellular carcinoma cell lines Hep3B and Huh7 containing populations with cancer stem cell markers. Here, we investigated the major component(s) of CAP and PAM for mediating the selective anti-proliferative effect on Hep3B and Huh7 cells. The anti-proliferative effect of CAP was mediated through the medium; however, the reactive oxygen species scavenger N-acetyl cysteine did not suppress PAM-induced cell death. Neither high concentrations of nitrite or nitrite/nitrate nor a low concentration of H2O2 present in the PAM containing sodium pyruvate affected the viability of Hep3B and Huh7 cells. Inhibitors of singlet oxygen, superoxide anions, and nitric oxide retained the capacity of PAM to induce anti-cancer effects. The anti-cancer effect was largely blocked in the PAM prepared by placing an aluminum metal mesh, but not a dielectric PVC mesh, between the plasma source and the medium. Hence, singlet oxygen, hydrogen peroxide, nitric oxide, and nitrite/nitrate are not the main factors responsible for PAM-mediated selective death in Hep3B and Huh7 cells. Other factors, such as charged particles including various ions in CAP and PAM, may induce selective anti-cancer effects in certain cancer cells.


Sign in / Sign up

Export Citation Format

Share Document