Raman analysis of strain in p-type doped silicon nanostructures

2018 ◽  
Vol 124 (9) ◽  
pp. 095102 ◽  
Author(s):  
Ferran Ureña-Begara ◽  
Renaud Vayrette ◽  
Umesh Kumar Bhaskar ◽  
Jean-Pierre Raskin
Author(s):  
Y. Kikuchi ◽  
N. Hashikawa ◽  
F. Uesugi ◽  
E. Wakai ◽  
K. Watanabe ◽  
...  

In order to measure the concentration of arsenic atoms in nanometer regions of arsenic doped silicon, the HOLZ analysis is carried out underthe exact [011] zone axis observation. In previous papers, it is revealed that the position of two bright lines in the outer SOLZ structures on the[011] zone axis is little influenced by the crystal thickness and the background intensity caused by inelastic scattering electrons, but is sensitive to the concentration of As atoms substitutbnal for Siatomic site.As the result, it becomes possible to determine the concentration of electrically activated As atoms in silicon within an observed area by means of the simple fitting between experimental result and dynamical simulatioan. In the present work, in order to investigate the distribution of electrically activated As in silicon, the outer HOLZ analysis is applied using a nanometer sized probe of TEM equipped with a FEG.Czodiralsld-gown<100>orientated p-type Si wafers with a resistivity of 10 Ώ cm are used for the experiments.TheAs+ implantation is performed at a dose of 5.0X1015cm-2at 25keV.


2013 ◽  
Vol 667 ◽  
pp. 180-185
Author(s):  
M. Ain Zubaidah ◽  
F.S. Husairi ◽  
S.F.M. Yusop ◽  
Noor Asli Asnida ◽  
Mohamad Rusop ◽  
...  

P-type silicon wafer ( orientation; boron doping; 0.75 ~ 10 Ω cm-1) was used to prepare samples of porous silicon nanostructures (PSiNs). All samples have been prepared by using photo-electrochemical anodisation. A fixed etching time of 30 minutes and volume ratio of electrolyte, hydrofluoric acid 48% (HF48%) and absolute ethanol (C2H5OH), 1:1 were used for various current densities, J. There were sample A (J=10 mA/cm2), sample B (J=20 mA/cm2), sample C (J=30 mA/cm2), sample D (J=40 mA/cm2) and sample E (J=50 mA/cm2). Photoluminescence (PL) and electroluminescence (EL) spectra were investigated. Maximum peak position of PL spectrum at about ~675 nm, while the maximum EL spectrum at about ~650 nm (which is similar to the PL spectrum).


2011 ◽  
Vol 58 (5) ◽  
pp. 1302-1310 ◽  
Author(s):  
A Hokazono ◽  
H Itokawa ◽  
N Kusunoki ◽  
I Mizushima ◽  
S Inaba ◽  
...  

2012 ◽  
Vol 576 ◽  
pp. 511-515
Author(s):  
N.A. Asli ◽  
Maslihan Ain Zubaidah ◽  
S.F.M. Yusop ◽  
Khairunnadim Ahmad Sekak ◽  
Mohammad Rusop ◽  
...  

Porous silicon nanostructures (PSiN) are nanoporous materials which consist of uniform network of interconnected pore. The structure of PSiN is depending on etching parameters, including current density, HF electrolyte concentration, substrate doping type and level. In this work, the results of a structural p-type and n-type of porous silicon nanostructures were investigated by Field Emission Scanning Electron Microscopy (FESEM) and Atomic Force Microscopy (AFM) is reported. Samples were prepared by photo-electrochemical anodization of p- and n-type crystalline silicon in HF electrolyte at different etching time. The surface morphology of PSiN was studied by FESEM with same magnification shown n-type surface form crack faster than p-type of PSiN. While the topography and roughness of PSiN was characterize by AFM. From topography shown the different etching time for both type PSiN produce different porosity and roughness respectively. There is good agreement between p- and n-type have different in terms of surface characteristic.


2014 ◽  
Vol 48 (12) ◽  
pp. 1605-1612 ◽  
Author(s):  
N. T. Bagraev ◽  
R. V. Kuzmin ◽  
A. S. Gurin ◽  
L. E. Klyachkin ◽  
A. M. Malyarenko ◽  
...  

2013 ◽  
Vol 686 ◽  
pp. 49-55
Author(s):  
M. Ain Zubaidah ◽  
N.A. Asli ◽  
Mohamad Rusop ◽  
Saifollah Abdullah

For this experiment, the main purpose of this experiment is to determine the electroluminescence of PSiNs samples with optimum electrolyte volume ratio of photo-electrochemical anodisation. PSiNs samples were prepared by photo-electrochemical anodisation by using p-type silicon substrate. For the formation of PSiNs on the silicon surface, a fixed current density (J=20 mA/cm2) and 30 minutes etching time were applied for the various electrolyte volume ratio. Volume ratio of hydrofluoric acid 48% (HF48%) and absolute ethanol (C2H5OH), HF48%:C2H5OH was used for sample A (3:1), sample B (2:1), sample C (1:1), sample D (1:2) and sample E (1:3). The light emission can be observed at visible range. The effective electroluminescence was observed for sample C. Porous silicon nanostructures light–emitting diode (PSiNs-LED) has high-potential device for future flat screen display and can be high in demand.


2002 ◽  
Vol 23 (1) ◽  
pp. 33-37 ◽  
Author(s):  
L. Ventura ◽  
B. Pichaud ◽  
W. Vervisch ◽  
F. Lanois

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
V. P. Geetha Vani ◽  
M. Vasudeva Reddy ◽  
K. T. Ramakrishna Reddy

Cu4SnS4 films of different thicknesses were prepared by thermal coevaporation technique on glass substrates at a constant substrate temperature of 400°C. The layer thickness was varied in the range 0.25–1 μm. The composition analysis revealed that all the evaporated films were nearly stoichiometric. The XRD patterns indicated the presence of a strong (311) peak as the preferred orientation, following the orthorhombic crystal structure corresponding to Cu4SnS4 films. Raman analysis showed a sharp peak at 317 cm−1, also related to Cu4SnS4 phase. The optical transmittance spectra suggested that the energy band gap decreased from 1.47 eV to 1.21 eV with increase of film thickness. The hot-probe test revealed that the layers had p-type electrical conductivity. A decrease of electrical resistivity was observed with the rise of film thickness.


Author(s):  
Michael Grätzel

The Sun provides about 100,000 Terawatts (TW) to the Earth, which is approximately ten thousand times greater than the world’s present rate of energy consumption (14 TW). Photovoltaic (PV) cells are being used increasingly to tap into this huge resource and will play a key role in future sustainable energy systems. Indeed, our present needs could be met by covering 0.5% of the Earth’s surface with PV installations that achieve a conversion efficiency of 10%. Fig. 8.1 shows a simple diagram of how a conventional photovoltaic device works. The top and bottom layers are made of an n-doped and p-doped silicon, where the charge of the mobile carriers is negative (electrons) or positive (holes), respectively. The p-doped silicon is made by ‘doping’ traces of an electron-poor element such as gallium into pure silicon, whereas n-doped silicon is made by doping with an electron-rich element such as phosphorus. When the two materials contact each other spontaneous electron and hole transfer across the junction produces an excess positive charge on the side of the n-doped silicon (A) and an excess negative charge on the opposite p-doped (B) side. The resulting electric field plays a vital role in the photovoltaic energy conversion process. Absorption of sunlight generates electron-hole pairs by promoting electrons from the valence band to the conduction band of the silicon. Electrons are minority carriers in the p-type silicon while holes are minority carriers in the n-type material. Their lifetime is very short as they recombine within microseconds with the oppositely charged majority carriers. The electric field helps to collect the photo-induced carriers because it attracts the minority carriers across the junction as indicated by the arrows in Fig. 8.1, generating a net photocurrent. As there is no photocurrent flowing in the absence of a field, the maximum photo-voltage that can be attained by the device equals the potential difference that is set up in the dark at the p-n junction. For silicon this is about 0.7V. So far, solid-state junction devices based on crystalline or amorphous silicon (Si) have dominated photovoltaic solar energy converters, with 94% of the market share.


Sign in / Sign up

Export Citation Format

Share Document