scholarly journals The mechanism of stick-slip phenomenon during friction process at low temperature environment

AIP Advances ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 065019
Author(s):  
Shiren La ◽  
Cong Liu ◽  
Xingyi Zhang
Machines ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Jing Wang ◽  
Zhihua Wan ◽  
Zhurong Dong ◽  
Zhengguo Li

The harmonic reducer, with its advantages of high precision, low noise, light weight, and high speed ratio, has been widely used in aerospace solar wing deployment mechanisms, antenna pointing mechanisms, robot joints, and other precision transmission fields. Accurately predicting the performance of the harmonic reducer under various application conditions is of great significance to the high reliability and long life of the harmonic reducer. In this paper, a set of automatic harmonic reducer performance test systems is designed. By using the CANOpen bus interface to control the servo motor as the drive motor, through accurately controlling the motor speed and rotation angle, collecting the angle, torque, and current in real time, the life cycle test of space harmonic reducer was carried out in high vacuum and low temperature environment on the ground. Then, the collected data were automatically analyzed and calculated. The test data of the transmission accuracy, backlash, and transmission efficiency of the space harmonic reducer were obtained. It is proven by experiments that the performance data of the harmonic reducer in space work can be more accurately obtained by using the test system mentioned in this paper, which is convenient for further research on related lubricating materials.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2119
Author(s):  
Lin Yu ◽  
Shiman Liu ◽  
Weiwei Yang ◽  
Mengying Liu

In order to elucidate the aging performance and aging mechanism of a rubber waterstop in low-temperature environments, the rubber waterstops were placed in the freezing test chamber to accelerate aging, and then we tested its tensile strength, elongation, tear strength, compression permanent deformation and hardness at different times. Additionally, the damaged specimens were tested by scanning electron microscope, Fourier transform infrared spectroscopy and energy dispersive spectrometry. The results showed that with the growth of aging time, the mechanical properties of the rubber waterstop are reduced. At the same time, many protrusions appeared on the surface of the rubber waterstop, the C element gradually decreased, and the O element gradually increased. During the period of 72–90 days, the content of the C element in the low-temperature air environment significantly decreased compared with that in low-temperature water, while the content of O element increased significantly.


2021 ◽  
Vol 11 (9) ◽  
pp. 4029
Author(s):  
Jian Wang ◽  
Pui-Lam Ng ◽  
Yuhua Gong ◽  
Han Su ◽  
Jinsheng Du

Porous asphalt mixture can be used as a road surface paving material with the remarkable advantage to prevent water accumulation and ponding. However, the performance of porous asphalt mixture in low temperature environment has not been thoroughly investigated, and this forms the subject of research in the present study. The mineral aggregate gradation of porous asphalt mixture was designed based on Bailey method, and the low temperature performance of porous asphalt mixture was studied by means of the low temperature bending test. The factors affecting the low temperature performance of porous asphalt mixture were analyzed through the orthogonal experimental design method, and the effects of porosity, modifier content, aging condition, and test temperature on the low temperature performance of porous asphalt mixture were evaluated. The results showed that the modifier content was the most important factor affecting the low temperature performance of porous asphalt mixture, followed by the test temperature, while the porosity and the aging condition were the least. Among the three performance evaluation indicators, namely the flexural tensile strength, maximum bending strain, and bending stiffness modulus, the maximum bending strain had the highest sensitivity to the porosity. It can be seen from the single factor influence test of porosity that there existed an approximately linear relationship between the maximum bending strain and the porosity of porous asphalt mixture, and the maximum bending strain decreased with increasing porosity. Furthermore, in order to ensure the good working performance of porous asphalt mixture in low temperature environment, the porosity should also satisfy the required limits of the maximum bending strain.


Author(s):  
Tomoya Inoue ◽  
Tokihiro Katsui ◽  
Chang-Kyu Rheem ◽  
Zengo Yoshida ◽  
Miki Y. Matsuo

Stick-slip is a major problem in offshore drilling because it may cause damage to the drill bit as well as crushing or grinding the sediment layer, which is crucial problem in scientific drilling because the purpose of the scientific drilling is to recover core samples from the layers. To mitigate stick-slip, first of all it is necessary to establish a model of the torsional motion of the drill bit and express the stick-slip phenomenon. Toward this end, the present study proposes a model of torsional waves propagating in a drillstring. An analytical model is developed and used to derive a neutral delay differential equation (NDDE), a special type of equation that requires time history, and an analytical model of stick-slip is derived for friction models between the drill bit and the layer as well as the rotation speed applied to the uppermost part of the drill string. In this study, the stick-slip model is numerically analyzed for several conditions and a time series of the bit motions is obtained. Based on the analytical results, the appearance of stick-slip and its severity are discussed. A small-scale model experiment was conducted in a water tank to observe the stick-slip phenomenon, and the result is discussed with numerical analysis. In addition, utilizing surface drilling data acquired from the actual drilling operations of the scientific drillship Chikyu, occurrence of stick-slip phenomenon is discussed.


2015 ◽  
Vol 0 (0) ◽  
Author(s):  
Aycin Kaplan ◽  
Azmi Seyhun Kipcak ◽  
Fatma Tugce Senberber ◽  
Emek Moroydor Derun ◽  
Sabriye Piskin

AbstractIn the present study, magnesium borate synthesis was performed by a hydrothermal mixing method, with the use of magnesium waste scraps (W) as the magnesium source, along with boric acid (H) or boron oxide (B) as the boron source. For an environment-friendly approach, a solid waste of magnesium was used at low reaction temperatures. Results of X-ray diffraction analyses showed that admontite [MgO(B


2012 ◽  
Author(s):  
Tatsuro Hosen ◽  
Tadahisa Yamabe ◽  
Shin Ito ◽  
Naoki Matsumoto ◽  
Kenichi Uchida ◽  
...  

1986 ◽  
Vol 4 (3) ◽  
pp. 375-378 ◽  
Author(s):  
A. Inspektor ◽  
U. Carmi ◽  
A. Raveh ◽  
Y. Khait ◽  
R. Avni

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yonghong Fu ◽  
Jie Yang ◽  
Hao Wang ◽  
Yuyang He

Purpose This study aims to investigate the efficacy of micro dimple in inhibiting stick-slip phenomenon on the sliding guideway. Design/methodology/approach In this study, micro-dimples were fabricated by laser on surfaces of steel disk and guideway. The disks and guideways were respectively performed pin-on-disk tribological tests and working condition experiments to study differences in lubrication condition and friction stability between textured and untextured surfaces. Findings Micro-dimples help reduce critical sliding speed that allows contact surfaces to enter in hydrodynamic lubrication regime. This increases hydrodynamic lubrication range and narrows speed range where stick-slip phenomenon can occur, enhancing sliding guideway’s adaptability for broader working conditions. Furthermore, friction stability on the textured surface improved, lowering the occurrence possibility of stick-slip phenomenon. Finally, difference between static and kinetic frictions on the textured surface is lower relative to the untextured surface, which decreases the critical velocity when the stick-slip phenomenon occurs. Originality/value The results indicate that laser-textured micro-dimples are significantly conducive to inhibit stick-slip phenomenon, thus providing smoother movement for the guideway and eventually increasing precision of the machine.


Sign in / Sign up

Export Citation Format

Share Document