Outer-layer structure arrangements based on the large-scale zero-crossings at moderate Reynolds number

2021 ◽  
Vol 33 (8) ◽  
pp. 085121
Author(s):  
Zhanqi Tang ◽  
Ziye Fan ◽  
Letian Chen ◽  
Nan Jiang
1982 ◽  
Vol 116 ◽  
pp. 123-156 ◽  
Author(s):  
T. R. Troutt ◽  
D. K. Mclaughlin

An experimental investigation of the flow and acoustic properties of a moderate-Reynolds-number (Re = 70000), Mach number M = 2·1, axisymmetric jet has been performed. These measurements extended the experimental studies conducted previously in this laboratory to a higher-Reynolds-number regime where the flow and acoustic processes are considerably more complex. In fact, mean-flow and acoustic properties of this jet were determined to be closely comparable to published properties of high-Reynolds-number jets.The major results of the flow-field measurements demonstrate that the jet shear annulus is unstable over a broad frequency range. The initial growth rates and wavelengths of these instabilities as measured by a hot wire were found to be in reasonable agreement with linear stability theory predictions. Also, in agreement with subsonic-jet results, the potential core of the jet was found to be most responsive to excitation at frequencies near a Strouhal number of S = 0·3. The overall development of organized disturbances around S = 0·2 seems to agree in general with calculations performed using the instability theory originally developed by Morris and Tam.The acoustic near field was characterized in terms of sound-pressure level and directivity for both natural and excited (pure-tone) jets. In addition, propagation direction and azimuthal character of dominant spectral components were also measured. It was determined that the large-scale flow disturbances radiate noise in a directional pattern centred about 30° from the jet axis. The noise from these disturbances appears from simple ray tracing to be generated primarily near the region of the jet where the coherent fluctuations saturate in amplitude and begin to decay. It was also determined that the large-scale components of the near-field sound are made up predominately of axisymmetric (n = 0) and helical (n = ±1) modes. The dominant noise-generation mechanism appears to be a combination of Mach-wave generation and a process associated with the saturation and disintegration of the large-scale instability. Finally, the further development of a noise-generation model of the instability type appears to hold considerable promise.


Author(s):  
Miguel R. Visbal ◽  
Daniel J. Garmann

Computations have been carried out in order to describe the complex unsteady flow structure over a stationary and plunging aspect-ratio-two wing under low Reynolds number conditions (Rec = 104). The flow fields are computed employing a high-fidelity implicit large-eddy simulation (ILES) approach found to be effective for moderate Reynolds number flows exhibiting mixed laminar, transitional and turbulent regions. The evolution of the flow structure and aerodynamic loading as a function of increasing angle of attack is presented. Lift and pressure fluctuations are found to be primarily dominated by the large scale circulatory pattern established above the wing due to separation from the leading edge, and by the inherent three dimensionality of the flow induced by the finite aspect ratio. The spanwise distribution of the sectional lift coefficient revealed only a minor direct contribution to the loading exherted by the tip vortex. High-frequency, small-amplitude oscillations are shown to have a significant effect on the separation process and accompanying loads suggesting potential flow control through either suitable actuation or aero-elastic tailoring.


Author(s):  
Philippe B. Martel ◽  
Luc G. Fre´chette

This paper presents a complete numerical study of the aerothermodynamics of subsonic moderate Reynolds number microturbomachinery using 2D computational fluid dynamics (CFD) on 24 cascade geometries and covering over 2000 conditions. Profile and mixing losses, as well as deviation and heat transfer correlations are developed for use in mean-line analysis and design. Both losses and thermal transfer tend to increase with decreasing Reynolds number, Mach number, and throat width. Deviation follows large scale turbomachinery behavior but tends to increase with viscous effects. A slender cascade geometry using a modified profile is suggested, potentially increasing isentropic efficiency by as much as 15%. This work defines a solid foundation for the design of microturbines used in power microelectromechanical systems (MEMS), such as gas and steam microturbines with sub-millimeter-scale blade chords operating at moderate Reynolds numbers (100 < Rec < 2000).


1976 ◽  
Vol 76 (1) ◽  
pp. 127-144 ◽  
Author(s):  
F. K. Browand ◽  
P. D. Weidman

A new experimental technique is described for the study of the interactions between the large-scale vortical features in the two-dimensional mixing layer. Detector probes above and below the mixing layer are used to monitor the large-scale structure. Conditional sampling is performed in a moderate Reynolds number developing flow, by using phase and amplitude information from these detector probes. It is shown that significant Reynolds-stress production is associated with the pairing interaction in which two vortical structures combine to form a single, larger vortical structure.


2005 ◽  
Vol 128 (3) ◽  
pp. 559-567 ◽  
Author(s):  
N. Jovičić ◽  
M. Breuer ◽  
J. Jovanović

Turbulence investigations of the flow past an unswept wing at a high angle of attack are reported. Detailed predictions were carried out using large-eddy simulations (LES) with very fine grids in the vicinity of the wall in order to resolve the near-wall structures. Since only a well-resolved LES ensures reliable results and hence allows a detailed analysis of turbulence, the Reynolds number investigated was restricted to Rec=105 based on the chord length c. Admittedly, under real flight conditions Rec is considerably higher (about (35-40)∙106). However, in combination with the inclination angle of attack α=18 deg this Rec value guarantees a practically relevant flow behavior, i.e., the flow exhibits a trailing-edge separation including some interesting flow phenomena such as a thin separation bubble, transition, separation of the turbulent boundary layer, and large-scale vortical structures in the wake. Due to the fine grid resolution applied, the aforementioned flow features are predicted in detail. Thus, reliable results are obtained which form the basis for advanced turbulence analysis. In order to provide a deeper insight into the nature of turbulence, the flow was analyzed using the invariant theory of turbulence by Lumley and Newman (J. Fluid Mech., 82, 161–178, 1977). Therefore, the anisotropy of various portions of the flow was extracted and displayed in the invariant map. This allowed us to examine the state of turbulence in distinct regions and provided an improved illustration of what happens in the turbulent flow. Thus, turbulence itself and the way in which it develops were extensively investigated, leading to an improved understanding of the physical mechanisms involved, not restricted to a standard test case such as channel flow but for a realistic, practically relevant flow problem at a moderate Reynolds number.


2018 ◽  
Vol 860 ◽  
pp. 886-938 ◽  
Author(s):  
Myoungkyu Lee ◽  
Robert D. Moser

The transport equations for the variances of the velocity components are investigated using data from direct numerical simulations of incompressible channel flows at friction Reynolds number ($Re_{\unicode[STIX]{x1D70F}}$) up to$Re_{\unicode[STIX]{x1D70F}}=5200$. Each term in the transport equation has been spectrally decomposed to expose the contribution of turbulence at different length scales to the processes governing the flow of energy in the wall-normal direction, in scale and among components. The outer-layer turbulence is dominated by very large-scale streamwise elongated modes, which are consistent with the very large-scale motions (VLSM) that have been observed by many others. The presence of these VLSMs drives many of the characteristics of the turbulent energy flows. Away from the wall, production occurs primarily in these large-scale streamwise-elongated modes in the streamwise velocity, but dissipation occurs nearly isotropically in both velocity components and scale. For this to happen, the energy is transferred from the streamwise-elongated modes to modes with a range of orientations through nonlinear interactions, and then transferred to other velocity components. This allows energy to be transferred more-or-less isotropically from these large scales to the small scales at which dissipation occurs. The VLSMs also transfer energy to the wall region, resulting in a modulation of the autonomous near-wall dynamics and the observed Reynolds number dependence of the near-wall velocity variances. The near-wall energy flows are more complex, but are consistent with the well-known autonomous near-wall dynamics that gives rise to streaks and streamwise vortices. Through the overlap region between outer- and inner-layer turbulence, there is a self-similar structure to the energy flows. The VLSM production occurs at spanwise scales that grow with$y$. There is transport of energy away from the wall over a range of scales that grows with$y$. Moreover, there is transfer of energy to small dissipative scales which grows like$y^{1/4}$, as expected from Kolmogorov scaling. Finally, the small-scale near-wall processes characterised by wavelengths less than 1000 wall units are largely Reynolds number independent, while the larger-scale outer-layer processes are strongly Reynolds number dependent. The interaction between them appears to be relatively simple.


Author(s):  
Wilfred V. Patrick ◽  
Danesh K. Tafti

Time-accurate calculations are used to investigate the three-dimensional flow structure and understand its influence on the heat transfer in a channel with concave indentations on one wall. A dimple depth to channel height ratio of 0.4 and dimple depth to imprint diameter ratio of 0.2 is used in the calculations. The Reynolds number (based on channel height) varies from Re = 280 in the laminar regime to Re = 2000 in the early turbulent regime. Fully developed flow and heat transfer conditions were assumed and a constant heat flux boundary condition was applied to the walls of the channel. In the laminar regime, the flow and heat transfer characteristics are dominated by the recirculation zones in the dimple with resulting augmentation ratios below unity. Flow transition is found to occur between Re = 1020 and 1130 after which both heat transfer and friction augmentation increase to values of 3.22 and 2.75, respectively, at Re = 2000. The presence of large scale vortical structures ejected from the dimple cavity dominate all aspects of the flow and heat transfer, not only on the dimpled surface but also on the smooth wall. In all cases the thermal efficiency using dimples was found to be significantly larger than other heat transfer augmentation techniques currently employed.


2017 ◽  
Vol 830 ◽  
pp. 797-819 ◽  
Author(s):  
Dominik Krug ◽  
Xiang I. A. Yang ◽  
Charitha M. de Silva ◽  
Rodolfo Ostilla-Mónico ◽  
Roberto Verzicco ◽  
...  

Considering structure functions of the streamwise velocity component in a framework akin to the extended self-similarity hypothesis (ESS), de Silva et al. (J. Fluid Mech., vol. 823, 2017, pp. 498–510) observed that remarkably the large-scale (energy-containing range) statistics in canonical wall-bounded flows exhibit universal behaviour. In the present study, we extend this universality, which was seen to encompass also flows at moderate Reynolds number, to Taylor–Couette flow. In doing so, we find that also the transversal structure function of the spanwise velocity component exhibits the same universal behaviour across all flow types considered. We further demonstrate that these observations are consistent with predictions developed based on an attached-eddy hypothesis. These considerations also yield a possible explanation for the efficacy of the ESS framework by showing that it relaxes the self-similarity assumption for the attached-eddy contributions. By taking the effect of streamwise alignment into account, the attached-eddy model predicts different behaviour for structure functions in the streamwise and in the spanwise directions and that this effect cancels in the ESS framework – both consistent with the data. Moreover, it is demonstrated here that also the additive constants, which were previously believed to be flow dependent, are indeed universal at least in turbulent boundary layers and pipe flow where high Reynolds number data are currently available.


1977 ◽  
Vol 83 (4) ◽  
pp. 641-671 ◽  
Author(s):  
H. H. Bruun

This paper presents a new experimental time-domain technique for the evaluation of the large-scale structure in a turbulent flow. The technique is demonstrated by hot-wire anemometry for a circular jet flow at a moderate Reynolds number of 104, and the large-scale structure identified is compared successfully with smoke flow-visualization observations. The temporal and spatial relationships of the separate large-scale flow events have been derived, and this information enabled the evaluation of the nonlinear spatial development of the large-scale flow structure.


Sign in / Sign up

Export Citation Format

Share Document