High-precision tabletop microplotter for flexible on-demand material deposition in printed electronics and device functionalization

2021 ◽  
Vol 92 (12) ◽  
pp. 125104
Author(s):  
Navid Hussain ◽  
Mohammad jan Nazami ◽  
Chunyan Ma ◽  
Michael Hirtz
2021 ◽  
Author(s):  
Dongjin Xie ◽  
Qiuyi Luo ◽  
Shen Zhou ◽  
Mei Zu ◽  
Haifeng Cheng

Inkjet printing of functional material has shown a wide range of application in advertzing, OLED display, printed electronics and other specialized utilities that require high-precision, mask-free, direct-writing deposition technique. Nevertheless,...


Lab on a Chip ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 3405-3415 ◽  
Author(s):  
Jingjing Wang ◽  
Ka Deng ◽  
Chuqing Zhou ◽  
Zecong Fang ◽  
Conary Meyer ◽  
...  

A novel microfluidic–robotic interface that is able to achieve automatic on-demand volume distribution ranging from nanoliter to microliter is introduced.


Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 57
Author(s):  
Federico Bertolucci ◽  
Nicolò Berdozzi ◽  
Lara Rebaioli ◽  
Trunal Patil ◽  
Rocco Vertechy ◽  
...  

Drop on demand (DoD) inkjet printing is a high precision, non-contact, and maskless additive manufacturing technique employed in producing high-precision micrometer-scaled geometries allowing free design manufacturing for flexible devices and printed electronics. A lot of studies exist regarding the ink droplet delivery from the nozzle to the substrate and the jet fluid dynamics, but the literature lacks systematic approaches dealing with the relationship between process parameters and geometrical outcome. This study investigates the influence of the main printing parameters (namely, the spacing between subsequent drops deposited on the substrate, the printing speed, and the nozzle temperature) on the accuracy of a representative geometry consisting of two interdigitated comb-shape electrodes. The study objective was achieved thanks to a proper experimental campaign developed according to Design of Experiments (DoE) methodology. The printing process performance was evaluated by suitable geometrical quantities extracted from the acquired images of the printed samples using a MATLAB algorithm. A drop spacing of 140 µm and 170 µm on the two main directions of the printing plane, with a nozzle temperature of 35 °C, resulted as the most appropriate parameter combination for printing the target geometry. No significant influence of the printing speed on the process outcomes was found, thus choosing the highest speed value within the investigated range can increase productivity.


Author(s):  
Sourin Bhattacharya ◽  
Artur Lutfurakhmanov ◽  
Justin M. Hoey ◽  
Orven F. Swenson ◽  
Rob Sailer

Gas dynamic cold spray was first discovered in the 1980s and has since been used as a surface coating process for depositing metals, metal-ceramic composites, metal-carbon nanotube composites and other composite materials onto both flexible and rigid substrates. We recently developed a focused cold spray material deposition tool termed Micro Cold Spray (MCS). MCS is a direct-write tool applicable for printed electronics and has been used to print conductive trace patterns as thin as 50 μm wide using copper, aluminum and tin micro powders. Unlike conventional aerosol processing at 10–100 m/s, aerosol particles in the MCS process are accelerated to speeds greater than 500 m/s. In this paper the possibility to accelerate, focus, collimate, and deposit aerosol particles is theoretically explored using a finite difference approximation method to simulate the flow of Helium through a symmetric converging-diverging nozzle of throat diameter 200 μm. A Lagrangian particle tracking algorithm is used to calculate the particle trajectories and corresponding velocities. This paper presents a comparison of the effect of Stoke’s drag force and Saffman’s lift force on the trajectory and velocity of copper particles 3 μm in diameter.


2018 ◽  
Vol 213 ◽  
pp. 01013
Author(s):  
Paphakorn Pitayachaval ◽  
Thanakhan Baothong

An additive Manufacturing (AM) process has been introduced to fabricate three-dimension objects from liquid polymers and powder particles e.g. polymers and metals, this process has been also applied to fabricate three-dimension ceramic objects called paste materials which compose of liquid and solid components. To build additive model, the paste material is extruded via pressure force through the nozzle by using ram extrusion, then the model is constructed layer-by-layer on the table to form designed shape. To improve a capability of extrusion process, the Extrusion On Demand (EOD), that refers to the ability of paste extrusion to regulate start and stop, has been developed to improve an accuracy of material deposition. This paper presents a review of process parameters that effect to extrusion on demand such as ram velocity, Dwell time, paste property and extrusion mechanisms.


Author(s):  
J. C. Russ ◽  
T. Taguchi ◽  
P. M. Peters ◽  
E. Chatfield ◽  
J. C. Russ ◽  
...  

Conventional SAD patterns as obtained in the TEM present difficulties for identification of materials such as asbestiform minerals, although diffraction data is considered to be an important method for making this purpose. The preferred orientation of the fibers and the spotty patterns that are obtained do not readily lend themselves to measurement of the integrated intensity values for each d-spacing, and even the d-spacings may be hard to determine precisely because the true center location for the broken rings requires estimation. We have implemented an automatic method for diffraction pattern measurement to overcome these problems. It automatically locates the center of patterns with high precision, measures the radius of each ring of spots in the pattern, and integrates the density of spots in that ring. The resulting spectrum of intensity vs. radius is then used just as a conventional X-ray diffractometer scan would be, to locate peaks and produce a list of d,I values suitable for search/match comparison to known or expected phases.


Author(s):  
K. Z. Botros ◽  
S. S. Sheinin

The main features of weak beam images of dislocations were first described by Cockayne et al. using calculations of intensity profiles based on the kinematical and two beam dynamical theories. The feature of weak beam images which is of particular interest in this investigation is that intensity profiles exhibit a sharp peak located at a position very close to the position of the dislocation in the crystal. This property of weak beam images of dislocations has an important application in the determination of stacking fault energy of crystals. This can easily be done since the separation of the partial dislocations bounding a stacking fault ribbon can be measured with high precision, assuming of course that the weak beam relationship between the positions of the image and the dislocation is valid. In order to carry out measurements such as these in practice the specimen must be tilted to "good" weak beam diffraction conditions, which implies utilizing high values of the deviation parameter Sg.


Author(s):  
Klaus-Ruediger Peters

Differential hysteresis processing is a new image processing technology that provides a tool for the display of image data information at any level of differential contrast resolution. This includes the maximum contrast resolution of the acquisition system which may be 1,000-times higher than that of the visual system (16 bit versus 6 bit). All microscopes acquire high precision contrasts at a level of <0.01-25% of the acquisition range in 16-bit - 8-bit data, but these contrasts are mostly invisible or only partially visible even in conventionally enhanced images. The processing principle of the differential hysteresis tool is based on hysteresis properties of intensity variations within an image.Differential hysteresis image processing moves a cursor of selected intensity range (hysteresis range) along lines through the image data reading each successive pixel intensity. The midpoint of the cursor provides the output data. If the intensity value of the following pixel falls outside of the actual cursor endpoint values, then the cursor follows the data either with its top or with its bottom, but if the pixels' intensity value falls within the cursor range, then the cursor maintains its intensity value.


Author(s):  
J. S. Wall

The forte of the Scanning transmission Electron Microscope (STEM) is high resolution imaging with high contrast on thin specimens, as demonstrated by visualization of single heavy atoms. of equal importance for biology is the efficient utilization of all available signals, permitting low dose imaging of unstained single molecules such as DNA.Our work at Brookhaven has concentrated on: 1) design and construction of instruments optimized for a narrow range of biological applications and 2) use of such instruments in a very active user/collaborator program. Therefore our program is highly interactive with a strong emphasis on producing results which are interpretable with a high level of confidence.The major challenge we face at the moment is specimen preparation. The resolution of the STEM is better than 2.5 A, but measurements of resolution vs. dose level off at a resolution of 20 A at a dose of 10 el/A2 on a well-behaved biological specimen such as TMV (tobacco mosaic virus). To track down this problem we are examining all aspects of specimen preparation: purification of biological material, deposition on the thin film substrate, washing, fast freezing and freeze drying. As we attempt to improve our equipment/technique, we use image analysis of TMV internal controls included in all STEM samples as a monitor sensitive enough to detect even a few percent improvement. For delicate specimens, carbon films can be very harsh-leading to disruption of the sample. Therefore we are developing conducting polymer films as alternative substrates, as described elsewhere in these Proceedings. For specimen preparation studies, we have identified (from our user/collaborator program ) a variety of “canary” specimens, each uniquely sensitive to one particular aspect of sample preparation, so we can attempt to separate the variables involved.


Sign in / Sign up

Export Citation Format

Share Document