Growing two-dimensional single crystals of organic semiconductors on liquid surfaces

2021 ◽  
Vol 119 (21) ◽  
pp. 210501
Author(s):  
Zheng Chen ◽  
Shuming Duan ◽  
Xiaotao Zhang ◽  
Wenping Hu
Author(s):  
Shohei Kumagai ◽  
Tatsuyuki Makita ◽  
Shun Watanabe ◽  
Jun Takeya

Abstract The past several decades have witnessed a vast array of developments in printable organic semiconductors, where successes both in synthetic chemistry and in printing technology constituted a key step forward to realization of printed electronics. In this review, we highlight specifically on materials science, charge transport, and device engineering of —two-dimensional single crystals—. Defect-free organic single-crystalline wafers manufactured via a one-shot printing process allows remarkably reliable implementations of organic thin-film transistors with decently high carrier mobility up to 10 cm2 V-1 s-1, which has revolutionized the current printing electronics to be able to meet looming IoT challenges. This review focuses on the perspective of printing two-dimensional single crystals with reasonable areal coverage, showing their promising applications for practical devices and future human society, particularly based on our recent contributions.


2019 ◽  
Author(s):  
Simil Thomas ◽  
Hong Li ◽  
Raghunath R. Dasari ◽  
Austin Evans ◽  
William Dichtel ◽  
...  

<p>We have considered three two-dimensional (2D) π-conjugated polymer networks (i.e., covalent organic frameworks, COFs) materials based on pyrene, porphyrin, and zinc-porphyrin cores connected <i>via</i> diacetylenic linkers. Their electronic structures, investigated at the density functional theory global-hybrid level, are indicative of valence and conduction bands that have large widths, ranging between 1 and 2 eV. Using a molecular approach to derive the electronic couplings between adjacent core units and the electron-vibration couplings, the three π-conjugated 2D COFs are predicted to have ambipolar charge-transport characteristics with electron and hole mobilities in the range of 65-95 cm<sup>2</sup>V<sup>-1</sup>s<sup>-1</sup>. Such predicted values rank these 2D COFs among the highest-mobility organic semiconductors. In addition, we have synthesized the zinc-porphyrin based 2D COF and carried out structural characterization via powder X-ray diffraction and surface area analysis, which demonstrates the feasability of these electroactive networks.</p>


2022 ◽  
Author(s):  
Hui Jiang ◽  
Jun Ye ◽  
Peng Hu ◽  
Shengli Zhu ◽  
Yanqin Liang ◽  
...  

Co-crystallization is an efficient way of molecular crystal engineering to tune the electronic properties of organic semiconductors. In this work, we synthesized anthracene-4,8-bis(dicyanomethylene)4,8-dihydrobenzo[1,2-b:4,5-b’]-dithiophene (DTTCNQ) single crystals as a template to...


2019 ◽  
Author(s):  
Roberto Köferstein

Triclinic single crystals of Cu2(H2O)4[C4H4N2][C6H2(COO)4]·2H2O have been grown in anaqueous silica gel. Space group P-1 (Nr. 2), a = 723.94(7) pm, b = 813.38(14) pm, c = 931.0(2) pm, α = 74.24(2)°, β = 79.24(2)°, γ = 65.451(10)°, V = 0.47819(14) nm3, Z = 1. Cu2+ is coordinated in a distorted, octahedral manner by two water molecules, three oxygen atoms ofthe pyromellitate anions and one nitrogen atom of pyrazine (Cu—O 194.1(2)–229.3(3) pm;Cu–N 202.0(2) pm). The connection of Cu2+ and [C6H2(COO)4)]4− yields infinite strands,which are linked by pyrazine molecules to form a two-dimensional coordination polymer.Thermogravimetric analysis in air showed that the dehydrated compound was stable between175 and 248 °C. Further heating yielded CuO.


2003 ◽  
Vol 58 (10) ◽  
pp. 971-974 ◽  
Author(s):  
U. Ch. Rodewald ◽  
R.-D. Hoffmann ◽  
R. Pöttgen ◽  
E.V. Sampathkumaran

Single crystals of Eu2PdSi3 were obtained from an arc-melted sample that was further annealed at 1020 K for seven days in a silica tube. The structure of Eu2PdSi3 was refined from single crystal X-ray diffractometer data: P6/mmm, a = 831.88(12), c = 435.88(9) pm, wR2 = 0.1175, 265 F2 values, and 13 variable parameters. It crystallizes with the U2RuSi3 structure, a superstructure of the AlB2 type. The palladium and silicon atoms form a planar two-dimensional [PdSi3] network. The two crystallographically different europium atoms have hexagonal prismatic coordinations Eu1Si12 and Eu2Pd4Si8. The Pd-Si and Si-Si distances within the [PdSi3] network are 244 and 236 pm, respectively.


Author(s):  
Xinzi Tian ◽  
Jiarong Yao ◽  
Siyu Guo ◽  
Zhaofeng Wang ◽  
Yanling Xiao ◽  
...  

Two-dimensional molecular crystals (2DMCs) are highly desirable to probe the intrinsic properties in organic semiconductors and are promising candidates for constructing high-performance optoelectronic devices. Liquids such as water are favorable...


2019 ◽  
Vol 7 (6) ◽  
pp. 1584-1591 ◽  
Author(s):  
Yunxia Zhang ◽  
Yucheng Liu ◽  
Zhuo Xu ◽  
Haochen Ye ◽  
Qingxian Li ◽  
...  

A centimeter-sized high-quality two-dimensional (PEA)2PbBr4 single crystal was prepared, which exhibited superior UV photo-response performance.


2021 ◽  
Author(s):  
Naotaka Kasuya ◽  
Junto Tsurumi ◽  
Toshihiro Okamoto ◽  
Shun Watanabe ◽  
Jun Takeya

Sign in / Sign up

Export Citation Format

Share Document