On the effects of temperature dependence of spectral emissivity in industrial radiation thermometry

2001 ◽  
Vol 33 (5) ◽  
pp. 599-610 ◽  
Author(s):  
Peter Saunders
2020 ◽  
Vol 48 (5-6) ◽  
pp. 423-438
Author(s):  
JUERGEN BRILLO ◽  
JOHANNA J. WESSING ◽  
HIDEKAZU KOBATAKE ◽  
HIROYUKI FUKUYAMA

The normal spectral emissivity ε of four compositions in the Al-Ti binary liquid system was measured in dependence of the wavelength and temperature. It was found that all compositions show negligible temperature dependence. At a wavelength of 940 nm, the emissivity amounts to 0.37, 0.40, 0.32, and 0.31 for Ti, Al20Ti80, Al50Ti50, and Al70Ti30, respectively. The dependence of the emissivity on composition is in good agreement with literature data of binary and multi-component Al-Ti-based alloys. Using the classical Drude model, electrical resistivities are predicted for the Al-Ti system from the measured emissivities. Comparison with existing data from literature for Al show reasonable agreement.


2011 ◽  
Vol 279 (1734) ◽  
pp. 1840-1846 ◽  
Author(s):  
Wenyun Zuo ◽  
Melanie E. Moses ◽  
Geoffrey B. West ◽  
Chen Hou ◽  
James H. Brown

The temperature size rule (TSR) is the tendency for ectotherms to develop faster but mature at smaller body sizes at higher temperatures. It can be explained by a simple model in which the rate of growth or biomass accumulation and the rate of development have different temperature dependence. The model accounts for both TSR and the less frequently observed reverse-TSR, predicts the fraction of energy allocated to maintenance and synthesis over the course of development, and also predicts that less total energy is expended when developing at warmer temperatures for TSR and vice versa for reverse-TSR. It has important implications for effects of climate change on ectothermic animals.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 235
Author(s):  
Tong Zhang ◽  
Xuyao Song ◽  
Gongjin Qi ◽  
Baolin An ◽  
Wei Dong ◽  
...  

Zirconium oxide (ZrO2) is widely used as the thermal barrier coating in turbines and engines. Accurate emissivity measurement of ZrO2 coating at high temperatures, especially above 1000 °C, plays a vital role in thermal modelling and radiation thermometry. However, it is an extremely challenging enterprise, and very few high temperature emissivity results with rigorously estimated uncertainties have been published to date. The key issue for accurately measuring the high temperature emissivity is maintaining a hot surface without reflection from the hot environment, and avoiding passive or active oxidation of material, which will modify the emissivity. In this paper, a novel modified integrated blackbody method is reported to measure the high temperature normal spectral emissivity of ZrO2 coating in the temperature range 1000 °C to 1200 °C and spectral range 8 μm to 14 μm. The results and the associated uncertainty of the measurement were estimated and a relative standard uncertainty better than 7% (k = 2) is achieved.


2014 ◽  
Author(s):  
James F Gillooly

The tremendous variation in brain size among vertebrates has long been thought to be related to differences in species’ metabolic rates. Species with higher metabolic rates can supply more energy to support the relatively high cost of brain tissue. And yet, while body temperature is known to be a major determinant of metabolic rate, the possible effects of temperature on brain size have scarcely been explored. Thus, here I explore the effects of temperature on brain size among diverse vertebrates (fishes,amphibians, reptiles, birds and mammals). I find that, after controlling for body size,brain size increases exponentially with temperature in much the same way asmetabolic rate. These results suggest that temperature-dependent changes in aerobic capacity, which have long been known to affect physical performance, similarly affect brain size. The observed temperature-dependence of brain size may explain observed gradients in brain size among both ectotherms and endotherms across broad spatial and temporal scales.


2011 ◽  
Vol 690 ◽  
pp. 226-229 ◽  
Author(s):  
Manickaraj Jeyakumar ◽  
Sumanth Shankar

The flow behavior and viscosity of pure aluminum, zinc and Zn-7wt%Al liquids were quantified with the effects of temperature and shear rate by rotational rheometry experiments. These systems exhibited a non-Newtonian, shear thinning and non-thixotropic flow behavior where in the liquid metal viscosity decreases with increasing shear rates. The temperature dependence of viscosity followed the Arrhenius equation. Moreover, at high shear rate regimes the flow resembles a nearly Newtonian behaviour.


1977 ◽  
Vol 55 (13) ◽  
pp. 1145-1149 ◽  
Author(s):  
P. Rochon ◽  
E. Fortin ◽  
J. C. Woolley

The effect of temperature on the magnitude of the photovoltage ofa Au–InSb Schottky barrier is investigated in the range 60–250 K. Analysis of the variation of photo voltage with temperature shows that the barrier height [Formula: see text], which for Au–InSb is mostly determined by interface states, varies slowly with temperature. A model, taking into account the temperature dependence of the different components of the photovoltaic cell, is developed to explain the rapid increase in photovoltage with decreasing temperature, and its predictions are tested against experimental results.


Sign in / Sign up

Export Citation Format

Share Document