Flowering of Australia's Rainforests

2021 ◽  
Author(s):  
Geoff Williams

The Flowering of Australia’s Rainforests provides a comprehensive introduction to the pollination ecology, evolution and conservation of Australian rainforest plants, with particular emphasis on subtropical rainforests and their associated pollinators. This significantly expanded second edition includes new information on the impact of climate change, fire, fragmentation and invasive species. Rainforests continue to be a focus of global conservation concern, not only from threats to biodiversity in general, but to pollinators specifically. Within Australia, this has been emphasised by recent cataclysmic fire impacts, ongoing extreme drought events, and the wider consideration of climate change. This second edition strengthens coverage of these issues beyond that of the first edition. The Flowering of Australia’s Rainforests makes timely contributions to our understanding of the nature and function of the world’s pollinator fauna, plant-reproduction dependencies, and the evolutionary pathway that has brought them to their current state and function. Illustrated with 150 colour plates of major species and rainforest formations, this reference work will be of value to ecologists and field naturalists, botanists, conservation biologists, ecosystem managers and community groups involved in habitat restoration.

Author(s):  
Heather Thon ◽  
Amy Krist

Understanding invasive species impacts is critical to determining how an ecosystem may function after an introduction. Invasive species can alter the structure and function of ecosystems, reduce biological diversity, and alter communities through predation, facilitation and competition. In the past 30 years, the invasive New Zealand mud snail (Potamopyrgus antipodarum) has established in areas of conservation concern in the American West including Yellowstone National Park. To develop a greater understanding of the impact of P. antipodarum on the native co-occurring snail, Fossaria (Bakerilymnaea) bulimoides group, we conducted two experiments to assess the interactions occurring between these snails. We found that F. bulimoides growth was reduced by all interactors, but especially by P. antipodarum. In addition, growth of F. bulimoides was much more affected by high biomass of snails than P. antipodarum. P. antipodarum grew more in the presence of interactors and their growth was facilitated by the presence of the native snail F. bulimoides.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3347
Author(s):  
Zwoździak Jerzy ◽  
Szałata Łukasz ◽  
Zwoździak Anna ◽  
Kwiecińska Kornelia ◽  
Byelyayev Maksym

The upcoming trends related to climate change are increasing the level of interest of social groups in solutions for the implementation and the realization of activities that will ensure the change of these trends and can reduce the impact on the environment, including the health of the community exposed to these impacts. The implementation of solutions aimed at improving the quality of the environment requires taking into account not only the environmental aspects but also the economic aspect. Taking into account the analysis of solutions changing the current state of climate change, the article focuses on the analysis of the potential economic effect caused by the implementation of nature-based solutions (NBSs) in terms of reducing the operating costs related to water retention for local social groups. The analysis is based on a case study, one of the research projects studying nature-based solutions, created as part of the Grow Green project (H2020) in Wrocław in 2017–2022. The results of the analysis are an observed potential positive change in economic effects, i.e., approximately 85.90% of the operating costs related to water retention have been reduced for local social groups by NBSs.


2021 ◽  
Vol 937 (3) ◽  
pp. 032069
Author(s):  
M I Ruzmetov

Abstract The Global research to assess the impact of climate change on soil-climatic conditions of arid lands has resulted in the following scientific findings: pasture degradation due to inefficient use of available resources; improved technologies for the condition of pasture soils and their restoration and the use of GIS monitoring; soil conditions, desertification factors and degradation processes of anthropogenesis in pasture conditions; developments for remote sensing of the Earth to determine the current state of pastures and the use of GIS technologies; and, improved technologies for adapting to climate change and combating soil degradation. Measures have been developed to restore biodiversity, increase crop productivity, and increase the fertility of these soils. This article describes the relevance of pasture land use around the world and the effectiveness of the use of a variety of water-saving technologies (Water-box) in the foothills and desert pastures.


2021 ◽  
pp. 64-71
Author(s):  
V. Bilotil

The construction industry plays an important role in achieving the UN Sustainable Development Goals and reducing the impact on climate change through the introduction of green building principles. So the article has been devoted to this type of construction as an important area of sustainable development. The interaction of climate change and construction activities has been substantiated in the article. Tasks and principles of sustainable construction have been analyzed. The economic, ecological and social benefits of green construction have been studied. The difference between traditional and green construction has been described. The current state of development of sustainable construction in Ukraine and the world has been considered. Prospects for green construction in Ukraine have been identified. The urgency and necessity of its implementation in our country have been proved.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 204
Author(s):  
J Christian Belisario ◽  
Hiu Ham Lee ◽  
Harshani Luknauth ◽  
Nathan W. Rigel ◽  
Luis R. Martinez

Acinetobacter baumannii has emerged as a significant opportunistic Gram-negative pathogen and causative agent of nosocomial pneumonia especially in immunocompromised individuals in intensive care units. Recent advances to understand the contribution and function of A. baumannii virulence factors in its pathogenesis have begun to elucidate how this bacterium interacts with immune cells and its interesting mechanisms for multi-antibiotic resistance. Taking advantage of the availability of the A. baumannii AB5075 transposon mutant library, we investigated the impact of the A. baumannii Clp genes, which encode for a chaperone-protease responsible for the degradation of misfolded proteins, on bacterial virulence in a model of pneumonia using C57BL/6 mice and survival within J774.16 macrophage-like cells. Clp-protease A. baumannii mutants exhibit decreased virulence in rodents, high phagocytic cell-mediated killing and reduced biofilm formation. Capsular staining showed evidence of encapsulation in A. baumannii AB5075 and Clp-mutant strains. Surprisingly, clpA and clpS mutants displayed irregular cell morphology, which may be important in the biofilm structural deficiencies observed in these strains. Interestingly, clpA showed apical-like growth, proliferation normally observed in filamentous fungi. These findings provide new information regarding A. baumannii pathogenesis and may be important for the development of therapies intended at reducing morbidity and mortality associated with this remarkable pathogen.


2019 ◽  
Author(s):  
Joseph AE Stewart ◽  
H Scott Butterfield ◽  
Jonathan Q Richmond ◽  
David J Germano ◽  
Michael F Westphal ◽  
...  

A recent global trend toward retirement of farmland presents opportunities to reclaim habitat for threatened and endangered species. We examine habitat restoration opportunities in one of the world’s most converted landscapes, California’s San Joaquin Desert (SJD). Despite the presence of 35 threatened and endangered species, agricultural expansion continues to drive habitat loss in the SJD, even as marginal farmland is retired. Over the next decades a combination of factors, including salinization, climate change, and historical groundwater overdraft, are projected to lead to the retirement of more than 2,000 km2 of farmland in the SJD. To promote strategic habitat protection and restoration, we conducted a quantitative assessment of habitat loss and fragmentation, habitat suitability, climatic niche stability, climate change impacts, habitat protection, and reintroduction opportunities for an umbrella species of the SJD, the endangered blunt-nosed leopard lizard (Gambelia sila). We use our suitability models, in conjunction with modern and historical land use maps, to estimate the historical and modern rate of habitat loss to development. The estimated amount of habitat lost since the species became protected under endangered species law in 1967 is greater than the total amount of habitat currently protected through public ownership and conservation easement. We document climatic niche contraction and associated range contraction away from the more mesic margins of the species’ historical distribution, driven by the anthropogenic introduction of exotic grasses and forbs. The impact of exotic species on G. sila range dynamics appears to be still unfolding. Finally, we use NASA fallowed area maps to identify 610 km2 of fallowed or retired agricultural land with high potential to again serve as habitat. We discuss conservation strategies in light of the potential for habitat restoration and multiple drivers of ongoing and historical habitat loss.


Author(s):  
Geoff Williams ◽  
Paul Adam

The Flowering of Australia's Rainforests provides an overview of pollination in Australian rainforests, especially subtropical rainforests. It also examines the plant-pollinator relationships found in rainforests worldwide. The Flowering of Australia's Rainforests progresses through introductory and popular sections that cover pollination in lore and legend; plant and flower evolution and development; and the role and function of colour, fragrance and form. Later chapters deal with breeding systems; mimicry; spatial, temporal and structural influences on plant-pollinator interactions; and a discussion and overview of floral syndromes. The book concludes with a section on conservation and fragmentation, and individual plant pollination case studies. Illustrated with colour photographs of major species, this reference work will be treasured by field naturalists, ecologists, conservation biologists, botanists, ecosystem managers, environmentalists, community groups and individuals involved in habitat restoration, students, and those with a broad interest in natural history.


2005 ◽  
Vol 2 (4) ◽  
pp. 245 ◽  
Author(s):  
Colin D. O'Dowd ◽  
Thorsten Hoffmann

Environmental Context.Atmospheric aerosols play an important role in determining the earth’s radiative budget, climate change and air quality levels. Much effort has been spent on quantifying the impact of aerosols on climate change; however, the largest gap in our knowledge relates to quantifying natural aerosol systems and the new particle formation process associated with these systems. The marine aerosol system is of particular interest due to the 70% ocean coverage of the earth’s surface. Coastal new particle formation events are though to be more frequent and of stronger intensity compared with open ocean events and thus have been studied in detail to identify possible processes leading to open ocean new particle production. Abstract.New particle formation via secondary gas-to-particle conversion processes over the oceans is one of the main mechanisms controlling the marine aerosol number population; however, despite extensive effort over the years, this phenomenon is still not well quantified. Coastal new particle formation events are more frequent than open ocean events and consequently have been studied in greater detail. This review article summarizes the recent studies into coastal new particle formation events and summarizes the linkage of these events to iodine emissions and ultimate particle formation via iodine oxide nucleation processes. The current state of knowledge may be summarized by concluding that, in general, coastal nucleation events are driven by biogenic emissions of iodine vapours that undergo rapid chemical reactions to produce condensable iodine oxides leading to nucleation and growth of new particles. The primary source of the condensable iodine vapours is thought to be molecular iodine (I2). The role of iodine oxides in open-ocean new particle production still remains an open question and is the most pressing next step to undertake.


1979 ◽  
Vol 58 (2_suppl) ◽  
pp. 684-694 ◽  
Author(s):  
R.M. Frank

Important progress has been made relative to the growth, structure and function of enamel. Better understanding of the epithelial mesenchymal interactions during odontogenesis has been gained through tissue culture, and the predominant role of the dental papilla has been established. Differences between rodent and human amelogenesis have been demonstrated. With radioautography and cytochemistry, a significant amount of new information has been obtained on the metabolism of the ameloblasts, concerning the synthesis of proteins, glycoproteins and proteoglycans, as well as calcium transport. Numerous biochemical investigations have been devoted to developing and mature enamel matrix. The organic components of human adult enamel are mainly constituted of lipids and proteins, but further investigations are still needed to elucidate their precise nature. The so-called key-hole configuration of adult enamel can be questioned when amelogenesis is considered since the tissue does not develop in a prismatic head-tail fashion. The most important results have probably been obtained in the field of individual enamel apatite crystals shape and ultrastructure as well as in the description of the precise patterns of their carious dissolution which bears great similarities to the dissolution of synthetic apatites in acids.


2022 ◽  
pp. 5-13
Author(s):  
Wayne M. Edwards

The impact of climate change on Malagasy amphibians remains poorly understood. Equally, deforestation, fragmentation, and lack of connectivity between forest patches may leave vulnerable species isolated in habitat that no longer suits their environmental or biological requirements. We assess the predicted impact of climate change by 2085 on the potential distribution of a Critically Endangered frog species, the golden mantella (Mantella aurantiaca), that is confined to a small area of the central rainforest of Madagascar. We identify potential population distributions and climatically stable areas. Results suggest a potential south-eastwardly shift away from the current range and a decrease in suitable habitat from 2110 km2 under current climate to between 112 km2 – 138 km2 by the year 2085 – less than 7 % of currently available suitable habitat. Results also indicate that the amount of golden mantella habitat falling within protected areas decreases by 86 % over the same period. We recommend research to ascertain future viability and the feasibility of expanding protection to newly identified potential sites. This information can then be used in future conservation actions such as habitat restoration, translocations, re introductions or the siting of further wildlife corridors or protected areas.


Sign in / Sign up

Export Citation Format

Share Document