scholarly journals Acinetobacter baumannii Strains Deficient in the Clp Chaperone-Protease Genes Have Reduced Virulence in a Murine Model of Pneumonia

Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 204
Author(s):  
J Christian Belisario ◽  
Hiu Ham Lee ◽  
Harshani Luknauth ◽  
Nathan W. Rigel ◽  
Luis R. Martinez

Acinetobacter baumannii has emerged as a significant opportunistic Gram-negative pathogen and causative agent of nosocomial pneumonia especially in immunocompromised individuals in intensive care units. Recent advances to understand the contribution and function of A. baumannii virulence factors in its pathogenesis have begun to elucidate how this bacterium interacts with immune cells and its interesting mechanisms for multi-antibiotic resistance. Taking advantage of the availability of the A. baumannii AB5075 transposon mutant library, we investigated the impact of the A. baumannii Clp genes, which encode for a chaperone-protease responsible for the degradation of misfolded proteins, on bacterial virulence in a model of pneumonia using C57BL/6 mice and survival within J774.16 macrophage-like cells. Clp-protease A. baumannii mutants exhibit decreased virulence in rodents, high phagocytic cell-mediated killing and reduced biofilm formation. Capsular staining showed evidence of encapsulation in A. baumannii AB5075 and Clp-mutant strains. Surprisingly, clpA and clpS mutants displayed irregular cell morphology, which may be important in the biofilm structural deficiencies observed in these strains. Interestingly, clpA showed apical-like growth, proliferation normally observed in filamentous fungi. These findings provide new information regarding A. baumannii pathogenesis and may be important for the development of therapies intended at reducing morbidity and mortality associated with this remarkable pathogen.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 823
Author(s):  
Cristiana Mateus ◽  
Ana Rita Nunes ◽  
Mónica Oleastro ◽  
Fernanda Domingues ◽  
Susana Ferreira

Aliarcobacter butzleri is an emergent enteropathogen that can be found in a range of environments. This bacterium presents a vast repertoire of efflux pumps, such as the ones belonging to the resistance nodulation cell division family, which may be associated with bacterial resistance, as well as virulence. Thus, this work aimed to evaluate the contribution of three RND efflux systems, AreABC, AreDEF and AreGHI, in the resistance and virulence of A. butzleri. Mutant strains were constructed by inactivation of the gene that encodes the inner membrane protein of these systems. The bacterial resistance profile of parental and mutant strains to several antimicrobials was assessed, as was the intracellular accumulation of the ethidium bromide dye. Regarding bacterial virulence, the role of these three efflux pumps on growth, strain fitness, motility, biofilm formation ability, survival in adverse conditions (oxidative stress and bile salts) and human serum and in vitro adhesion and invasion to Caco-2 cells was evaluated. We observed that the mutants from the three efflux pumps were more susceptible to several classes of antimicrobials than the parental strain and presented an increase in the accumulation of ethidium bromide, indicating a potential role of the efflux pumps in the extrusion of antimicrobials. The mutant strains had no bacterial growth defects; nonetheless, they presented a reduction in relative fitness. For the three mutants, an increase in the susceptibility to oxidative stress was observed, while only the mutant for AreGHI efflux pump showed a relevant role in bile stress survival. All the mutant strains showed an impairment in biofilm formation ability, were more susceptible to human serum and were less adherent to intestinal epithelial cells. Overall, the results support the contribution of the efflux pumps AreABC, AreDEF and AreGHI of A. butzleri to antimicrobial resistance, as well as to bacterial virulence.



2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Katrin Schlie ◽  
Jaeline E. Spowart ◽  
Luke R. K. Hughson ◽  
Katelin N. Townsend ◽  
Julian J. Lum

Hypoxia is a signature feature of growing tumors. This cellular state creates an inhospitable condition that impedes the growth and function of all cells within the immediate and surrounding tumor microenvironment. To adapt to hypoxia, cells activate autophagy and undergo a metabolic shift increasing the cellular dependency on anaerobic metabolism. Autophagy upregulation in cancer cells liberates nutrients, decreases the buildup of reactive oxygen species, and aids in the clearance of misfolded proteins. Together, these features impart a survival advantage for cancer cells in the tumor microenvironment. This observation has led to intense research efforts focused on developing autophagy-modulating drugs for cancer patient treatment. However, other cells that infiltrate the tumor environment such as immune cells also encounter hypoxia likely resulting in hypoxia-induced autophagy. In light of the fact that autophagy is crucial for immune cell proliferation as well as their effector functions such as antigen presentation and T cell-mediated killing of tumor cells, anticancer treatment strategies based on autophagy modulation will need to consider the impact of autophagy on the immune system.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Helal F. Hetta ◽  
Israa M. S. Al-Kadmy ◽  
Saba Saadoon Khazaal ◽  
Suhad Abbas ◽  
Ahmed Suhail ◽  
...  

AbstractWe aimed to isolate Acinetobacter baumannii (A. baumannii) from wound infections, determine their resistance and virulence profile, and assess the impact of Silver nanoparticles (AgNPs) on the bacterial growth, virulence and biofilm-related gene expression. AgNPs were synthesized and characterized using TEM, XRD and FTIR spectroscopy. A. baumannii (n = 200) were isolated and identified. Resistance pattern was determined and virulence genes (afa/draBC, cnf1, cnf2, csgA, cvaC, fimH, fyuA, ibeA, iutA, kpsMT II, PAI, papC, PapG II, III, sfa/focDE and traT) were screened using PCR. Biofilm formation was evaluated using Microtiter plate method. Then, the antimicrobial activity of AgNPs was evaluated by the well-diffusion method, growth kinetics and MIC determination. Inhibition of biofilm formation and the ability to disperse biofilms in exposure to AgNPs were evaluated. The effect of AgNPs on the expression of virulence and biofilm-related genes (bap, OmpA, abaI, csuA/B, A1S_2091, A1S_1510, A1S_0690, A1S_0114) were estimated using QRT-PCR. In vitro infection model for analyzing the antibacterial activity of AgNPs was done using a co-culture infection model of A. baumannii with human fibroblast skin cell line HFF-1 or Vero cell lines. A. baumannii had high level of resistance to antibiotics. Most of the isolates harbored the fimH, afa/draBC, cnf1, csgA and cnf2, and the majority of A. baumannii produced strong biofilms. AgNPs inhibited the growth of A. baumannii efficiently with MIC ranging from 4 to 25 µg/ml. A. baumannii showed a reduced growth rate in the presence of AgNPs. The inhibitory activity and the anti-biofilm activity of AgNPs were more pronounced against the weak biofilm producers. Moreover, AgNPs decreased the expression of kpsMII , afa/draBC,bap, OmpA, and csuA/B genes. The in vitro infection model revealed a significant antibacterial activity of AgNPs against extracellular and intracellular A. baumannii. AgNPs highly interrupted bacterial multiplication and biofilm formation. AgNPs downregulated the transcription level of important virulence and biofilm-related genes. Our findings provide an additional step towards understanding the mechanisms by which sliver nanoparticles interfere with the microbial spread and persistence.



2021 ◽  
Author(s):  
Geoff Williams

The Flowering of Australia’s Rainforests provides a comprehensive introduction to the pollination ecology, evolution and conservation of Australian rainforest plants, with particular emphasis on subtropical rainforests and their associated pollinators. This significantly expanded second edition includes new information on the impact of climate change, fire, fragmentation and invasive species. Rainforests continue to be a focus of global conservation concern, not only from threats to biodiversity in general, but to pollinators specifically. Within Australia, this has been emphasised by recent cataclysmic fire impacts, ongoing extreme drought events, and the wider consideration of climate change. This second edition strengthens coverage of these issues beyond that of the first edition. The Flowering of Australia’s Rainforests makes timely contributions to our understanding of the nature and function of the world’s pollinator fauna, plant-reproduction dependencies, and the evolutionary pathway that has brought them to their current state and function. Illustrated with 150 colour plates of major species and rainforest formations, this reference work will be of value to ecologists and field naturalists, botanists, conservation biologists, ecosystem managers and community groups involved in habitat restoration.



Author(s):  
David Vega-Avelaira ◽  
Simon Beggs

The immune system is essential for identifying and mounting defensive responses to tissue damage and infection. In addition, it is increasingly recognized that interactions between immune cells and nociceptive pathways can modulate pain sensitivity. The role and function of immune cells in the central nervous system changes during postnatal development, and as a result, the impact of neuroimmune interactions on pain signalling varies with both age and the type of injury.



2013 ◽  
Vol 79 (21) ◽  
pp. 6535-6543 ◽  
Author(s):  
H. M. Sharon Goh ◽  
Scott A. Beatson ◽  
Makrina Totsika ◽  
Danilo G. Moriel ◽  
Minh-Duy Phan ◽  
...  

ABSTRACTAcinetobacter baumanniiis a multidrug-resistant pathogen associated with hospital outbreaks of infection across the globe, particularly in the intensive care unit. The ability ofA. baumanniito survive in the hospital environment for long periods is linked to antibiotic resistance and its capacity to form biofilms. Here we studied the prevalence, expression, and function of theA. baumanniibiofilm-associated protein (Bap) in 24 carbapenem-resistantA. baumanniiST92 strains isolated from a single institution over a 10-year period. Thebapgene was highly prevalent, with 22/24 strains being positive forbapby PCR. Partial sequencing ofbapwas performed on the index case strain MS1968 and revealed it to be a large and highly repetitive gene approximately 16 kb in size. Phylogenetic analysis employing a 1,948-amino-acid region corresponding to the C terminus of Bap showed that BapMS1968clusters with Bap sequences from clonal complex 2 (CC2) strains ACICU, TCDC-AB0715, and 1656-2 and is distinct from Bap in CC1 strains. By using overlapping PCR, thebapMS1968gene was cloned, and its expression in a recombinantEscherichia colistrain resulted in increased biofilm formation. A Bap-specific antibody was generated, and Western blot analysis showed that the majority ofA. baumanniistrains expressed an ∼200-kDa Bap protein. Further analysis of three Bap-positiveA. baumanniistrains demonstrated that Bap is expressed at the cell surface and is associated with biofilm formation. Finally, biofilm formation by these Bap-positive strains could be inhibited by affinity-purified Bap antibodies, demonstrating the direct contribution of Bap to biofilm growth byA. baumanniiclinical isolates.



2021 ◽  
Author(s):  
Martin Tereň ◽  
Ekaterina Shagieva ◽  
Lucie Vondrakova ◽  
Jitka Viktorova ◽  
Viviana Svarcova ◽  
...  

Abstract Currently, it is clear that the luxS gene has an impact on the process of biofilm formation in Campylobacter jejuni. However, even within the species naturally occurring strains of Campylobacter lacking the luxS gene exist, which can form biofilms. In order to better understand the genetic determinants and the role of quorum sensing through the LuxS/AI-2 pathway in biofilm formation, a set of mutant/complemented strains of C. jejuni 81–176 were prepared. Additionally, the impact of the mutagenic strategy used against the luxS gene was investigated. Biofilm formation was affected by both the presence and absence of the luxS gene, and by the mutagenic strategy used. Analysis by CLSM showed that all mutant strains formed significantly less biofilm mass when compared to the wild-type. Interestingly, the deletion mutant (∆luxS) showed a larger decrease in biofilm mass than the substitution (∙luxS) and insertional inactivated (⸬luxS) mutants, even though all the mutant strains lost the ability to produce autoinducer-2 molecules. Moreover, the biofilm of the ∆luxS mutant lacked the characteristic microcolonies observed in all other strains. The complementation of all mutant strains resulted in restored ability to produce AI-2, to form a complex biofilm, and to develop microcolonies at the level of the wild-type.



2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Ricarda Cortés-Vieyra ◽  
Carlos Rosales ◽  
Eileen Uribe-Querol

Oral tissues are constantly exposed to damage from the mechanical effort of eating and to microorganisms, mostly bacteria. In healthy gingiva tissue remodeling and a balance between bacteria and innate immune cells are maintained. However, excess of bacteria biofilm (plaque) creates an inflammation state that recruits more immune cells, mainly neutrophils to the gingiva. Neutrophils create a barrier for bacteria to reach inside tissues. When neutrophils are insufficient, bacteria thrive causing more inflammation that has been associated with systemic effects on other conditions such as atherosclerosis, diabetes, and cancer. But paradoxically when neutrophils persist, they can also promote a chronic inflammatory state that leads to periodontitis, a condition that leads to damage of the bone-supporting tissues. In periodontitis, bone loss is a serious complication. How a neutrophil balance is needed for maintaining healthy oral tissues is the focus of this review. We present recent evidence on how alterations in neutrophil number and function can lead to inflammatory bone loss, and how some oral bacteria signal neutrophils to block their antimicrobial functions and promote an inflammatory state. Also, based on this new information, novel therapeutic approaches are discussed.



2015 ◽  
Vol 60 (1) ◽  
pp. 57-63 ◽  
Author(s):  
Suvarna Krishnamoorthy ◽  
Bhavikkumar P. Shah ◽  
Hiu Ham Lee ◽  
Luis R. Martinez

ABSTRACTAcinetobacter baumanniiis a Gram-negative bacterium that causes nosocomial infections worldwide. This microbe's propensity to form biofilms allows it to persist and to survive on clinical abiotic surfaces for long periods. In fact,A. baumanniibiofilm formation and its multidrug-resistant nature severely compromise our capacity to care for patients in hospital environments. In contrast, microbicides such as cetrimide (CT) and chlorhexidine (CHX) play important roles in the prevention and treatment of infections. We assessed the efficacy of CT and CHX, either alone or in combination, in eradicatingA. baumanniibiofilms formed by clinical isolates, by using stainless steel washers to mimic hard abiotic surfaces found in hospital settings. We demonstrated that increasing amounts of each microbicide, alone or in combination, were able to damage and to reduce the viability ofA. baumanniibiofilms efficaciously. Interestingly, theadeBgene of the resistance-nodulation-cell division (RND) family is predominantly associated with acquired resistance to antimicrobials inA. baumannii. We showed that CT and CHX adversely modified the expression and function of the RND-type efflux pump AdeABC in biofilm-associatedA. baumanniicells. Furthermore, we established that these microbicides decreased the negative charges onA. baumanniicell membranes, causing dysregulation of the efflux pump and leading to cell death. Our findings suggest that CT and CHX, alone or in combination, can be used efficaciously for eradication ofA. baumanniifrom hospital surfaces, in order to reduce infections caused by this nosocomial agent.



2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jacqueline M. Acres ◽  
Myka Jaap Youngapelian ◽  
Jay Nadeau

AbstractAs interest in space exploration rises, there is a growing need to quantify the impact of microgravity on the growth, survival, and adaptation of microorganisms, including those responsible for astronaut illness. Motility is a key microbial behavior that plays important roles in nutrient assimilation, tissue localization and invasion, pathogenicity, biofilm formation, and ultimately survival. Very few studies have specifically looked at the effects of microgravity on the phenotypes of microbial motility. However, genomic and transcriptomic studies give a broad general picture of overall gene expression that can be used to predict motility phenotypes based upon selected genes, such as those responsible for flagellar synthesis and function and/or taxis. In this review, we focus on specific strains of Gram-negative bacteria that have been the most studied in this context. We begin with a discussion of Earth-based microgravity simulation systems and how they may affect the genes and phenotypes of interest. We then summarize results from both Earth- and space-based systems showing effects of microgravity on motility-related genes and phenotypes.



Sign in / Sign up

Export Citation Format

Share Document