Field amelioration of acidic soils in south-east Queensland. III. Relationships of maize yield response to lime and unamended soil properties

1998 ◽  
Vol 49 (4) ◽  
pp. 649 ◽  
Author(s):  
P. W. Moody ◽  
T. Dickson ◽  
R. L. Aitken

Maize (Zea mays) grain yield responses to rates of lime were measured at 19 sites onseveral soil types in south-east Queensland. At some sites, one rate of gypsum or phosphogypsum was also applied. Relative grain yield (100 mean yield of nil lime treatment/maximum yield) was correlated with each of soil pH (1 : 5 water and 1 : 5 0·01 M CaCl2), soil solution pH, exchangeable (1 M KCl) Al, exchangeable (1 M NH4Cl) Ca, Al saturation of the effective cation exchange capacity (ECEC), Ca saturation of the ECEC, and 0·01 M CaCl2 extractable Mn and Al. Across all soil types, Mitscherlich fits indicated that most of the variation in relative grain yield was accounted for by either Ca saturation (R2 = 0·62) or soil solution pH (R2 = 0·61), although soil pH(water) (R2 =0·53), Al saturation (R2 = 0·46), exchangeable Ca (R2 = 0·42), soil pH(CaCl2) (R2 = 0·40), and CaCl2-extractable Mn (R2 = 0·33) also accounted for significant (P < 0·05) amounts of variation. These results demonstrate that one or both of Al and Mn toxicities were having an impact on yieldat different sites. The contrast between the lack of responses to gypsum/phosphogypsum at mostlime responsive sites and the observation that Ca saturation was well correlated with relative grainyield suggested an ameliorating effect of Ca on Al toxicity. This effect was captured by an index,Al saturation/Ca saturation, which was well correlated with relative grain yield (R2 = 0·66 for a Mitscherlich fit). A step-up regression approach indicated that most variation in relative grain yield (RY) could beaccounted for by the following equation: The assessment of factors likely to limit yield on strongly acidic soils of the region will therefore needto include indices of Al and Mn toxicities as well as Ca status. Soil pH integrated the effects of these factors on yield, and as a single index, was shown to bean effective diagnostic tool. Relative grain yields of 90% were associated with pH values in the soil solution, 1 : 5 water and 1 : 5 0·01 M CaCl2 of 4·5, 5·2, and 4·4, respectively.

2015 ◽  
Vol 66 (1) ◽  
pp. 23 ◽  
Author(s):  
Craig Scanlan ◽  
Ross Brennan ◽  
Gavin A. Sarre

Changes in soil fertility following long periods of crop production in the south-west of Western Australia (WA) may have implications for phosphorus (P) fertiliser recommendations for wheat production. When the sandy soils of the region were first cleared for agricultural production, they were typically marginally acidic to neutral, with soil extractable-P levels inadequate for crop production. Recent surveys have shown that 87% of soils in south-west WA exceed the critical soil extractable-P level required for 90% of maximum grain yield, and ~70% of soils have a surface-soil pHCa <5.5. There has also been a shift towards a high frequency of wheat in the crop sequence. We conducted a field experiment to begin to quantify the importance of the interactions between soil pH and crop sequence on wheat response to P fertiliser. For grain yield, the magnitude of the response was greatest for rate of P applied, followed by lime treatment and then crop sequence. There were no interactions between these treatments. Our analysis of the grain-yield response to rates of P fertiliser showed no significant difference between the shape of the grain-yield response curve for treatments with and without lime. However, we did find a significant interaction between lime treatment and rate of P fertiliser applied for shoot P concentration and that soil P was more plant-available in the +lime than the –lime treatment. There is justification for making realistic adjustments to yield potential based on soil pH or crop sequence, although further work is required to determine whether the shape of the grain-yield response curve varies with these two factors.


Soil Research ◽  
1991 ◽  
Vol 29 (4) ◽  
pp. 483 ◽  
Author(s):  
RL Aitken ◽  
PW Moody

Ninety soil samples (81 surface, 9 subsurface) were collected from eastern Queensland and soil pH (1:5 soi1:solution) was measured in each of deionized water (pH,), 0.01 M CaCl2, 0-002 M CaCl2 and 1 M KCl. Soil solution was extracted from each soil after incubation for 4 days at the 10 kPa matric suction moisture content, and pH (pHss) and electrical conductivity were measured. The objectives of this work were to investigate interrelationships between soil pH measurements in various electrolytes and soil solution pH in a suite of predominantly acidic soils. Although the relationships between pHw and pH measured in the other electrolytes could be described by linear regression, the fitting of quadratic equations improved the coefficients of determination, indicating the relationships were curvilinear. The majority of soils exhibited variable charge characteristics (CEC increases with soil pH) and the curvilinear trend is explained on this basis. At low pH, the difference between pH, and pH measured in an electrolyte will be small compared with the difference at higher pH values because, in general, at low pH, soils will be closer to their respective PZSE (pH at which electrolyte strength has no effect). Of the electrolytes used, pH measured in 0.002 M CaCl2 gave the closest approximation to pHs,. However, when soils with ionic strengths greater than 0.018 M were selected (predominantly cultivated surface soils), pH in 0.01 M CaCl2 gave the best approximation to pHss. For predicting pHss, the ionic strength of the electrolyte will need to be matched to that of the soils studied. For a suite of soils with a large range in soil solution ionic strength (as in this study), it is preferable to measure pHss directly.


Soil Research ◽  
1995 ◽  
Vol 33 (3) ◽  
pp. 461 ◽  
Author(s):  
DM Wheeler ◽  
DC Edmeades

Thirteen trails were sampled to investigate the effects of depth, or the surface application of lime and phosphorus (P) fertilizer, on solution composition. Soil solutions were extracted by centrifuge from field moist soils within 24 h of sampling. Solution Ca, Mg, Na and K, Al, Mn and Fe concentrations generally decreased and Al, Mn and Fe concentrations generally increased with depth; although exceptions occurred. The largest decrease occurred in the first 25-50 mm of soil. Higher solution Al concentrations occurred in a band at a depth of between 50 and 100 mm in some soils. Lime generally increased solution pH and solution Ca, Mg and HCO3 concentrations, and reduced solution Al, Fe and Mn concentrations in the topsoils. In one soil (Matapiro silt loam) 2 years after lime was applied, lime increased solution pH down to a depth of 100 mm, Ca and HCO3 down to 75 mm and Mg down to 50 mm. Lime also decreased solution Al and Mn down to 75 mm and Fe down to 50 mm. In one series of trials, lime increased solution Ca concentrations at a depth of 50-100 mm 4 years after application in six out of the eight sites. In the same trial series, the application of P fertilizer increased solution P concentrations at 0-50 mm from a mean of 5 �M in the no-added P plots up to a mean of 56 �M at the highest P rate. The highest solution P concentration recorded was 194 �M. The increase in solution P concentrations for a given application of fertilizer P varied from 0.05 to 1.03 �M P per kg P ha-1 applied. Maximum pasture yield and 90% maximum yield occurred when solution P concentrations were about 28 and 14 �M respectively. Solution P concentrations determined from P adsorption isotherms were not a good indicator of solution P concentrations measured in soil. Solution pH was higher than soil pH (1:2.5 soil:water ratio, 2 h equilibration) with a solution pH of 6.0 corresponding to a soil pH in water of about 5.2.


Soil Research ◽  
2001 ◽  
Vol 39 (5) ◽  
pp. 979 ◽  
Author(s):  
R. N. Summers ◽  
M. D. A. Bolland ◽  
M. F. Clarke

Bauxite residue (red mud) is the byproduct from treatment of crushed bauxite with caustic soda to produce alumina. When dried the residue is alkaline and has a high capacity to retain phosphorus (P). The residue is added to pastures on acidic sandy soils to increase the capacity of the soils to retain P so as to reduce leaching of P into waterways and so reduce eutrophication of the waterways. This paper examines how red mud influences the effectiveness of P from single superphosphate for producing subterranean clover (Trifolium subterraneum) dry herbage, in the year of application and in the years after application (residual value). Red mud was applied at 0, 2, 5, 10, 20, and 40 t/ha and the P was applied at 0, 5, 10, 20, 40, 80, and 160 kg P/ha. In the year of application and the year after application of red mud, dry matter yields were doubled on the soil treated with 20 t/ha of red mud compared with the untreated control. Improvements in production were initially greater in the red mud treatments than in the lime treatment (2 t lime/ha). Red mud increased the maximum yield plateau for P applied in current and previous years. When P was applied to freshly applied red mud, more P needed to be applied to produce the same yield as the amount of red mud applied increased. Red mud increased soil pH, and the increases in yield are attributed to removing low soil pH as a constraint to pasture production. This initial need for higher amounts of fertiliser P when increasing amounts of red mud were applied may be due to increased P sorption caused by increased precipitation of applied P when the fertiliser was in close contact with the freshly alkaline red mud. When P was freshly applied to red mud that had been applied to the soil 12 months ago, yield response and P content increased. This was attributed to the reduction in sorption of P due to red mud being neutralised by the soil and because sorption of P already present in the soil reduced the capacity of the red mud to sorb freshly applied fertiliser P. Residues of P in the soil and pH were also increased with application of red mud. In the years after application of red mud and lime, relative to P applied to nil red mud and nil lime treatment, the effectiveness of fertiliser P applied to the red mud and lime treatments increased. This was so as determined using plant yield, P concentration in plant tissue, and soil P test.


Soil Research ◽  
2017 ◽  
Vol 55 (4) ◽  
pp. 341 ◽  
Author(s):  
Craig A. Scanlan ◽  
Ross F. Brennan ◽  
Mario F. D'Antuono ◽  
Gavin A. Sarre

Interactions between soil pH and phosphorus (P) for plant growth have been widely reported; however, most studies have been based on pasture species, and the agronomic importance of this interaction for acid-tolerant wheat in soils with near-sufficient levels of fertility is unclear. We conducted field experiments with wheat at two sites with acid soils where lime treatments that had been applied in the 6 years preceding the experiments caused significant changes to soil pH, extractable aluminium (Al), soil nutrients and exchangeable cations. Soil pH(CaCl2) at 0–10cm was 4.7 without lime and 6.2 with lime at Merredin, and 4.7 without lime and 6.5 with lime at Wongan Hills. A significant lime×P interaction (P<0.05) for grain yield was observed at both sites. At Merredin, this interaction was negative, i.e. the combined effect of soil pH and P was less than their additive effect; the difference between the dose–response curves without lime and with lime was greatest at 0kgPha–1 and the curves converged at 32kgPha–1. At Wongan Hills, the interaction was positive (combined effect greater than the additive effect), and lime application reduced grain yield. The lime×P interactions observed are agronomically important because different fertiliser P levels were required to maximise grain yield. A lime-induced reduction in Al phytotoxicity was the dominant mechanism for this interaction at Merredin. The negative grain yield response to lime at Wongan Hills was attributed to a combination of marginal soil potassium (K) supply and lime-induced reduction in soil K availability.


2005 ◽  
Vol 54 (3-4) ◽  
pp. 309-324 ◽  
Author(s):  
László Márton

The effect of natural rainfall and N, P and K nutrients on the yield of maize was investigated in 16 years of a long-term fertilization experiment set up at the Experimental Station of the Institute in Nagyhörcsök. The soil was a calcareous chernozem, having the following characteristics: pH (KCl): 7.3, CaCO 3 : 5%, humus: 3%, clay: 20-22%, AL-soluble P 2 O 5 : 60-80, AL-soluble K 2 O: 180-200, KCl-soluble Mg: 150-180; KCl+ EDTA-soluble Mn, Cu and Zn content: 80-150, 2-3 and 1-2 mg·kg -1 . The experiment had a split-split-plot design with 20 treatments in 4 replications, giving a total of 80 plots. The treatments involved three levels each of N and P and two levels of K in all possible combinations (3×3×2=18), together with an untreated control and one treatment with a higher rate of NPK, not included in the factorial system. The main results can be summarized as follows: An analysis of the weather in the 16 experimental years revealed that there were no average years, as two years were moderately dry (1981, 1982), eight were very dry (1973, 1978, 1986, 1989, 1990, 1993, 1997, 2002) and six were very wet (1969, 1974, 1977, 1994, 1998, 2001). In dry years the N, NP and NK treatments led to a yield increment of over 3.0  t·ha -1 (3.2 t·ha -1 ) (81%) compared with the unfertilized control, while the full NPK treatment caused hardly any increase in the maize yield (7.2 t·ha -1 ). In the case of drought there was a 4.0% yield loss in the N, NP and NK treatments compared to the same treatments in the dry years. This loss was only 1.0% in the NPK treatment. In very wet years the positive effects of a favourable water supply could be seen even in the N, NP and NK treatments (with yields of around 7.4 t·ha -1 ). The yield increment in these treatments compared with the droughty years averaged 8%, while balanced NPK fertilization led to a further 2% increase (10%). Significant quadratic correlations were found between the rainfall quantity during the vegetation period and the yield, depending on the nutrient supplies (Ø: R = 0.7787***, N: R = 0.8997***, NP: R = 0.9338***, NK: R = 0.9574***, NPK: R = 0.8906***). The optimum rainfall quantity and the corresponding grain yield ranged from 328-349 mm and 5.0-7.7 t·ha -1 , respectively, depending on the fertilizer rate. The grain yield increment obtained per mm rainfall in the case of optimum rainfall supplies was found to be 14.3-23.2 kg·ha -1 , while the quantity of rainfall utilized during the vegetation period for the production of 1 kg air-dry matter in the case of maximum yield amounted to 698, 449, 480, 466 and 431 litres in the control, N, NP, NK and NPK treatments, respectively. It was clear from the 43-year meteorological database for the experimental station (1961-2003) that over the last 23 years (1981-2003) the weather has become substantially drier. Compared with the data for the previous 20 years (1961-1980) there was an increase of 20, 500 and 50% in the number of average, dry and droughty years, no change in the number of wet years and a 71% drop in the number of very wet years.


Plant Disease ◽  
2016 ◽  
Vol 100 (8) ◽  
pp. 1735-1743 ◽  
Author(s):  
Yuba R. Kandel ◽  
Kiersten A. Wise ◽  
Carl A. Bradley ◽  
Albert U. Tenuta ◽  
Daren S. Mueller

A 2-year study was conducted in Illinois, Indiana, Iowa, and Ontario in 2013 and 2014 to determine the effects of planting date, seed treatment, and cultivar on plant population, sudden death syndrome (SDS) caused by Fusarium virguliforme, and grain yield of soybean (Glycine max). Soybean crops were planted from late April to mid-June at approximately 15-day intervals, for a total of three to four plantings per experiment. For each planting date, two cultivars differing in SDS susceptibility were planted with and without fluopyram seed treatment. Mid-May plantings resulted in higher disease index compared with other planting dates in two experiments, early June plantings in three, and the remaining six experiments were not affected by planting date. Soil temperature at planting was not linked to SDS development. Root rot was greater in May plantings for most experiments. Resistant cultivars had significantly lower disease index than the susceptible cultivar in 54.5% of the experiments. Fluopyram reduced disease severity and protected against yield reductions caused by SDS in nearly all plantings and cultivars, with a maximum yield response of 1,142 kg/ha. Plant population was reduced by fluopyram seed treatment and early plantings in some experiments; however, grain yield was not affected by these reductions. Yields of plots planted in mid-June were up to 29.8% less than yields of plots planted in early May. The lack of correlation between early planting date and SDS severity observed in this study indicates that farmers do not have to delay planting in the Midwest to prevent yield loss due to SDS; cultivar selection combined with fluopyram seed treatment can reduce SDS in early-planted soybean (late April to mid May).


2012 ◽  
Vol 49 (1) ◽  
pp. 3-18 ◽  
Author(s):  
E. RUTTO ◽  
J. P. VOSSENKEMPER ◽  
J. KELLY ◽  
B. K. CHIM ◽  
W. R. RAUN

SUMMARYCorrect placement of side dress nitrogen (N) fertilizer could increase nitrogen use efficiency (NUE) and maize yield production. Field studies were established to evaluate application of midseason (V8 to V10), variable liquid urea ammonia nitrate (28%), N rates (0, 45, 90 and 134 kg N ha−1) and different application distances (0, 10, 20 and 30 cm) away from the maize row on grain yield and NUE at Haskell and Hennessey in 2009, Efaw in 2010 and Lake Carl Blackwell, Oklahoma in 2009 and 2010. A randomized complete block design with three replications was used throughout the study. Results indicated that maize grain yield in sites with adequate rainfall increased significantly (p < 0.05) with N rate, and poor N response was recorded in sites with low rainfall. Across sites and seasons, varying side dress N application distance away from the maize row did not significantly (p < 0.05) influence maize grain yield and NUE even with no prep-plant applied. Environments with adequate rainfall distribution had better maize grain yields when high side dress N rates (90 and 134 kg N ha−1) were applied 0 to 10 cm, and a higher NUE when 45 kg N ha−1 was applied 0 to 20 cm away from the maize row. For low N rates (45 kg N ha−1), increased maize grain yield and NUE were achieved when side dress N was applied 0 to 20 cm away from the maize row at locations with low rainfall distribution. Across sites and seasons, increasing side dress N to 134 kg N ha−1 contributed to a general decline in mean NUE to as low as 4%, 35%, 10%, 51% at Hennessey, Efaw, LCB (2009) and LCB (2010) respectively.


1988 ◽  
Vol 39 (3) ◽  
pp. 319 ◽  
Author(s):  
RC Bruce ◽  
LA Warrell ◽  
DG Edwards ◽  
LC Bell

In the course of three experiments, soybean (Glycerine max (L.) Merr.) cv. Forrest was grown in 21 soils (four surface soils and 17 subsoils) amended with liming materials (CaCO3 and Mg CO3) and soluble Ca salts (CaSO4.2H20 and CaCl2.2H2O). In most soils, the soluble salts increased concentrations and activities of Al species in solution to levels that restricted root growth, and MgCO3, induced a Ca limitation to root growth. Root lengths after three days were related to so11 and soil solution attributes.Suitable diagnostic indices for the prediction of Ca limitations to root growth were either Ca saturation of the effective cation exchange capacity or Ca activity ratio of the soil solution, which was defined as the ratio of the activity of Ca to the sum of the activities of Ca, Mg, Na, and K. Values corresponding to 90% relative root length (RRL) of soybean were 0.05 for the Ca activity ratio and 11% for Ca saturation. Calcium activity and Ca concentration in the soil solution and exchangeable Ca were less useful for this purpose.Soil Al saturation was not a good predictor of Al toxicity, but soil solution measurements were. The activities of Al3+ and AlOH2+ gave the best associations with RRL, and values corresponding to 90% RRL were 4 8M and 0.5 8M respectively. The results suggested that Al(OH)3� , Al(OH)2+, and AlSO4+, were not toxic species. Soil solution pH and soil pH measured in water were more sensitive indicators of root growth than soil pH measured in 0.01 M CaCl2.Using a Ca activity ratio of 0.05 and an Al3+ activity of 4 8M as diagnostic indices, none of the 20 soils in two experiments were toxic in Al, while 13 (all subsoils) were deficient in Ca. Thus the first limitation on root growth was Ca deficiency and not Al toxicity, in spite of high Al saturations and relatively low pH in these soils. However, Al toxicity could be induced by increasing the ionic strengths of soil solutions.


Author(s):  
W. Winnie Kimiti ◽  
M. W. Mucheru-Muna ◽  
J. N. Mugwe ◽  
K. F. Ngetich ◽  
M. N. Kiboi ◽  
...  

In Sub-Saharan Africa (SSA), acidic soil covers 29% of the total area. About 13% of the Kenyan total land area has acidic soils, widely distributed in croplands of the central and western Kenyan regions. The high soil acidity, coupled with soil nutrient depletion, negatively affects crop productivity in the region. We conducted an on-farm experiment to determine the effect of lime, manure, and phosphatic fertilizer application, either solely or combined, on soil chemical properties, maize yield, and profitability in acidic soils of Tharaka Nithi County, Kenya. The treatments were different rates of manure, lime, and P fertilizer. The experiment was designed as a randomized complete block design replicated ten times in farmer’s fields. Soil sampling was done at a depth of 0-20 cm prior to the start of the experiment, after crop harvest of SR2016 and LR2017 seasons. The samples were analyzed in the laboratory following standard methods. Results showed that lime significantly increased soil pH by 10.6% during the SR2016 and by 17.7% during the LR2017. Similarly, treatments with lime reduced exchangeable acidity and increased soil available P. Treatments with inorganic fertilizers had significantly higher maize grain yield in comparison with treatments with the sole application of lime, manure, and lime + manure. Lime + fertilizer + manure treatment gave the highest average maize grain yield (5.1 t ha−1), while control gave the lowest (1.5 t ha−1) during the LR2017 season. Economic returns were low due to the prevailing low rainfall experienced during the study period during the SR2016 season. Lime combined with inorganic fertilizer treatment recorded the highest returns (128.75 USD ha-1) followed by sole inorganic fertilizer (105.94 USD ha-1) during the LR2017 season. The study recommends a combination of both lime and inorganic fertilizer for enhanced maize production and profitability in Tharaka-Nithi County, Kenya.


Sign in / Sign up

Export Citation Format

Share Document