The influence of feeding level and type of feed on the carcasses of steers

1982 ◽  
Vol 33 (4) ◽  
pp. 721 ◽  
Author(s):  
RJ Sully ◽  
JHL Morgan

In an experiment started in June 1976, 14-16-month-old Hereford steers weighing 300 kg were allocated to five treatments. Cattle in four of the treatment groups, viz. high (H), medium (M), low (L) and low-high (L-H) growth rates were held in feedlots and offered whole oats supplemented with linseed meal, hay and minerals to obtain growth rates of 1.0, 0.7, 0.4 and 0.4-1.0 kg day-1 respectively. Steers in the fifth treatment group were grazed on pasture (P) to gain weight at 0.7 kg day-1 and received no supplements. Each treatment group of 10 steers was slaughtered at a mean liveweight of 450 kg. The carcasses of H steers were shorter, had more total fat and a greater depth of fat at the 12-13th rib than those of the L steers (fat depths of H, M and L groups were 10.1, 8.6 and 7.1 mm). The H steers also had a larger eye muscle area, a higher ABCAS (Australian Beef Carcase Appraisal System) score and higher carcass grades than the L steers. The L-H treatment appeared to reduce the fat content of the total side relative to the M treatment but the treatment was confounded with differences in carcass gain and carcass weight. Pasture grazing reduced carcass fat content as compared with grain feeding (15.2 v. 18.6%; P c 0.05), but differences in depth and weight of subcutaneous fat in the carcass side or in individual cuts were not significant. There was no detectable difference in tenderness due to level of feeding or feed type. Separately, the effects of feeding level and grain feeding increased carcass fatness by 16 and 22% respectively; we suggest that these effects are of commercial importance, particularly if the combined effects are additive.

1998 ◽  
Vol 38 (8) ◽  
pp. 785 ◽  
Author(s):  
C. Gazzola ◽  
C. J. O'Neill ◽  
J. E. Frisch

Summary. A Brahman sire (Select Brahman) whose steer progeny had both high marbling scores and high intramuscular fat content has been identified. The effect was independent of dam breed (5 different dam breeds were analysed), was present in both grain-finished and pasture-finished progeny, and was independent of hormone growth promotant treatment. From pasture, over twice as many progeny from the Select sire (62.5%) had high marbling scores as progeny from 10 other Brahman sires (25.9%). The effect was not as marked in grain-finished steers but the Select sire still produced one-third more high marbling progeny (84.6%) than the other sires (63.6%). The Select sire’s progeny were equal to or better than progeny from Tuli sires in producing high marbling scores. The intramuscular fat content (3.5 ± 0.3 g/100 g) of the progeny from the Select sire was greater than double that of progeny from other Brahman sires (1.9 ± 0.2 g/100 g; P<0.0001) and higher than progeny from Tuli sires (2.3 ± 0.1 g/100 g; P<0.0001). The increased marbling and intramuscular fat content were not associated with increased subcutaneous fat deposition, decreased muscle deposition, lower growth rate or smaller mature size since there were no differences in age, hot standard carcass weight, rump fat depth and rib eye muscle area between the Select sire’s progeny and those of other Brahman sires. The identification of a high marbling trait in a Bos indicus sire is of considerable significance to the northern Australian beef industry because it enables markets requiring marbled carcasses to be targeted while maintaining the advantages of tropical adaptation.


2014 ◽  
Vol 43 (2) ◽  
pp. 147-153 ◽  
Author(s):  
MS Rana ◽  
MA Hashem ◽  
S Akhter ◽  
M Habibullah ◽  
MH Islam ◽  
...  

The research was conducted to study the effect of heat stress on carcass characteristics and meat quality in indigenous sheep. Nine sheep were divided into three groups which were almost similar in age, sex and weight. Three groups were divided as zero hour (T0), four hours (T4) and eight hours (T8) heat exposure to direct sunlight. During experimental period temperature–humidity index (THI) value was calculated as 27.09 which indicated T4 and T8 groups were subjected to heat stress condition for at least four hours and eight hours respectively every day. Slaughter weight, body length and heart girth had no significant difference among the treatment groups. Dry matter, ash and ether extract had no significant difference (p>0.05) among the treatment groups but crude protein were increased with the increase of heat stress from T0 to T8 group (p<0.05). Drip loss was increased (p<0.05) in non-exposure group than treated groups but there is no significant result (p>0.05) found in pH and cooking loss. Carcass weight and eye muscle area had no significant difference (p>0.05) among the treatment groups but dressing percentage was decreased with the increase of time in heat treated groups (p<0.01). Significant difference (p<0.05) were found in weight of heart, kidney, lung + trachea and pluck between control and heat treated groups. The significant difference (p>0.05) in empty gut was found in gut with content and gut fill in heat treated groups. It can be concluded that heat stress had significant changes on carcass characteristics and meat quality of indigenous sheep.DOI: http://dx.doi.org/10.3329/bjas.v43i2.20717 Bang. J. Anim. Sci. 2014. 43 (2): 147-153


1981 ◽  
Vol 32 (4) ◽  
pp. 681 ◽  
Author(s):  
CP McPhee

A pig herd was selected for 6 years by using an economic index combining growth rate, food conversion efficiency and carcass leanness. These three traits were all measured in a performance test which permitted appetite variation between pigs to be expressed. Boars selected with an intensity of 118 were used for 6 months, and sows with an intensity of 114 were kept for two farrowings. An unselected control herd was maintained concurrently. To measure selection response, selected (S) and control (C) pigs were compared as they grew from 25 to 90 kg liveweight on ad lib. and restricted feeding during the last 2 years of selection. The following significant (P < 0.05) responses occurred in the selection herd: (i) A slight increase in growth rate on restricted feed, balanced by a similar decrease on ad lib, feeding. (ii) A decline in food conversion ratio of 5 % (C, 2.79; S, 2.65) due mainly to a reduction in appetite. (On ad lib. feeding, food intake per day declined by 6 % (C, 2.30 kg/d; S, 2.16 kg/d.)). (iii) A decline in average subcutaneous fat depth by 11 % (C, 27.8 mm; S, 24.7 mm) and in fat dissected from the ham by 7 % (C, 2.80 kg; S, 2.61 kg). (iv) An increase in estimated lean in the carcass by 2% (C, 30.3 kg; S, 31.0 kg). (v) A decline in dressing percentage of the carcass by 1 % (C, 77.1 %; S, 76.2 %). There was no change in eye muscle area or carcass length. The results are discussed in terms of changes in the ratio of food intake to lean growth. In the group fed ad lib., this ratio declined by 7 %, mainly because of a decline in food intake. On restricted feeding it fell by 6 %, mainly owing to an increase in lean growth. That portion of the selection effort absorbed in reducing food intake may have been more profitably directed to increasing lean growth by suppressing appetite variation during performance testing, rather than allowing it to be expressed.


1995 ◽  
Vol 46 (4) ◽  
pp. 703
Author(s):  
PA Kenney ◽  
ME Goddard ◽  
LP Thatcher

Three and a half thousand lambs from Border Leicester x Merino ewes mated to 133 sires from five Poll Dorset, one White Suffolk, one Siromt, two Meridale and four Merino studs were slaughtered, their carcasses halved and one side divided into six primals. Subcutaneous fat was dissected from all six primals, and bone from only the three rear primals. There were four slaughter groups: average slaughter weights of 30 and 35 kg for ewes and 35 and 45 kg for cryptorchids. Heritabilities and phenotypic and genetic correlations for all traits measured (>50) are published in an appendix. Where comparisons were available, estimates were similar to those for purebred animals. Genetic parameters for various assessments of fat were similar except for channel and omental fat. The GR fat depth was the best predictor for total subcutaneous fat, cannon bone length for total bone, and eye muscle area for total soft tissue. Carcass weight and GR appear to be the most important measurements for use in selection for breeding of sires for the prime lamb industry. Slaughter weight and fat depth at the C site could be used as suitable alternatives on live animals. Production of lean meat is not likely to be increased greatly by including measurements other than liveweight and GR in a selection index. Of the other measurements bone length and eye muscle measurements showed most promise.


1993 ◽  
Vol 33 (7) ◽  
pp. 825 ◽  
Author(s):  
D Perry ◽  
AP Yeates ◽  
WA McKiernan

The association between visually assessed muscle scores on live steers and their carcasses, eye muscle area, and the yield of saleable and lean meat was determined on 156 steers of mixed breeds (mean carcass weight 282 kg, mean P8 fat depth 13 mm). The contribution of subcutaneous and intermuscular fat to differences in saleable meat yield was also investigated. There was a negative correlation between P8 fat depth and both live ( r = -0.21) and carcass muscle score (r. = -0.31); therefore, the assessors were not scoring fatter steers as having better shape. The correlation between live and carcass muscle scores was 0.79. The correlation between carcass muscle score and eye muscle area was 0.58. When live muscle score, carcass muscle score, or eye muscle area was included in regression models already containing weight and fat depth, there was a significant (P<0.001) increase in the amount of variation in saleable and lean meat yield explained by the models. At the same liveweight and fat depth, a change in live muscle score from C (moderately muscled) to B (well muscled) was accompanied by an increase of 1.7% in saleable meat and 2.2% in lean meat, when these were expressed as a percentage of carcass weight. The equivalent change in carcass muscle score in carcasses of the same weight and f a t depth was accompanied by an increase of 1.9% in saleable meat and 2.4% in lean meat. The increased weight of saleable meat was not due to an increase in the dissected fat content of the meat. Weight of subcutaneous fat decreased as muscle score increased (P<0.01). There was no significant association between the amount of intermuscular fat and either live or carcass muscle score (r. = -0.075 and -0.18, respectively).


1993 ◽  
Vol 33 (3) ◽  
pp. 275 ◽  
Author(s):  
D Perry ◽  
WA McKiernan ◽  
AP Yeates

Domestic trade weight steers (149) were assessed visually for subcutaneous fat and then given a live muscle score based on the thickness and convexity of their shape relative to frame size, having adjusted for subcutaneous fat. After slaughter, carcasses were given visually assessed carcass muscle scores based on the same critera. Fat depths at the P8 site and 12-13th eye muscle area were measured. Half of each carcass was boned-out into primal joints with subcutaneous fat trimmed to 6 mm. The weights of these joints plus meat trim (85% visual lean) were added to obtain the weight of saleable meat. The weight of fat trimmed from the carcass, primal joints, and meat trimmings during the bone-out process was added to obtain weight of fat trim. The assessors did not give steers with a greater subcutaneous fat depth better muscle scores when scoring for muscle and intermuscular fat. There was a negative correlation between live muscle score and P8 fat depth (-0.37), and no significant correlation between carcass muscle score and P8 fat depth. The associations between muscle score and yield of saleable meat were investigated using multiple regression techniques, with fat depth and muscle score sequentially added after weight in the model. The coefficient of determination and the residual standard deviation were compared at each stage. For saleable meat yield (kg), liveweight and carcass weight were the main contributors to the variation explained by the models fitted. For saleable meat yield as a percentage of carcass weight, most of the variation accounted for by the models fitted was explained by fat depth, muscle score, and eye muscle area. When added after weight and fat depth in regression models, muscle score significantly increased the coefficient of determination in all cases, with an associated decrease in the residual standard deviation. The effect was strongest for percentage of saleable meat. At the same weight and fat depth, animals or carcasses with better muscle scores produced more saleable meat.


Animals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1884 ◽  
Author(s):  
Gertruida L. van Wyk ◽  
Louwrens C. Hoffman ◽  
Phillip E. Strydom ◽  
Lorinda Frylinck

Weaner male Boer Goats (BG; n = 36; 21 bucks and 15 wethers) and large frame Indigenous Veld Goats (IVG; n = 41; 21 bucks and 20 wethers) were raised on hay and natural grass ad libitum and the recommended amount of commercial pelleted diet to a live weight between 30 and 35 kg. Carcass quality characteristics (live weight, carcass weights, dressing %, chilling loss and eye muscle area) were measured. The right sides of the carcasses were divided into wholesale cuts and dissected into subcutaneous fat, meat and bone. Large frame Indigenous Veld Goat (IVG) wethers were slightly lighter than the IVG bucks with no significant difference observed between BG. Wethers compared to bucks had higher dressing %, subcutaneous fat % in all primal cuts, intramuscular fat %, kidney fat % and, overall, slightly less bone %. Some breed–wether interactions were noticed: IVG wethers were slightly lighter than the IVG bucks, but the IVG bucks tended to produce higher % meat compared to other test groups. Judged on the intramuscular fat % characteristics, it seems as if wethers should produce juicier and more flavorsome meat compared to bucks.


1977 ◽  
Vol 89 (2) ◽  
pp. 257-266 ◽  
Author(s):  
A. S. Davies ◽  
W. J. Pryor

SummaryThe subcutaneous, intermuscular and cavity fat depots of the half carcasses of 15 Large White × Landrace castrated male pigs, forming a growth series from 8 to 62 kg live weight, were dissected. Seventy individual muscles of these pigs were analysed for intramuscular fat content. The growth rates of each of the four fat depots, relative to total fat, were similar. Subcutaneous fat was the predominant fat depot over the growth range studied. Both intramuscular fat and non-fat dry matter grew faster than the entire muscles containing them. Growth gradients for the intramuscular fat of muscle groups, relative to either total intramuscular fat or to total fat, were similar to those for the entire muscles. The growth gradients for muscle groups were affected by neither the growth of the contained intramuscular fat nor the contained non-fat dry matter. Intramuscular fat density, but not non-fat dry-matter density, varied throughout the carcass. The fat content of muscles was highest in those that could be useful as subcutaneous insulators.


2001 ◽  
Vol 41 (7) ◽  
pp. 1013 ◽  
Author(s):  
M. B. McDonagh ◽  
R. M. Herd ◽  
E. C. Richardson ◽  
V. H. Oddy ◽  
J. A. Archer ◽  
...  

Residual feed intake (RFI) is calculated as the difference between an animal’s actual feed intake and its expected feed intake based on its size and growth over a specified test period. Following a single generation of divergent selection for postweaning RFI, Angus steers and Angus × Hereford, Angus×Poll Hereford and Angus × Shorthorn crossbred steers born in 1996 and 1997 were fed in a feedlot. Cohorts of steers were slaughtered at the same age and had attained similar (P&gt;0.05) final liveweights: 467 kg for steers selected for low RFI (high efficiency; HE, n = 91) and 459 kg for steers selected for high RFI (low efficiency; LE, n = 98). The HE and LE steers had similar (P>0.05) carcass weight (247 and 244 kg), dressing percentage (53.1 and 53.2&percnt;) and eye-muscle area (58.9 and 60.3 cm 2 ). The HE steers had slightly less subcutaneous fat over the rib than the LE steers (9.2 v. 10.1 mm, P&lt;0.05), and there was a trend towards less fat over the rump of HE steers (11.5 v. 12.1 mm, P = 0.10). For meat samples taken from the M. longissimus dorsi (LD) there were no differences (P>0.05) between the HE and LE steers in content of intramuscular fat (5.4 and 5.3% fresh weight), marbling scores, meat colour and fat colour. There were also no differences (P>0.05) between HE and LE steers in shear force and compression values for samples of LD aged for 1 day (4.6 and 4.6 kg shear force, 1.45 and 1.44 kg compression), or for 14 days (3.8 and 3.5 kg, 1.36 and 1.32 kg). Myofibril fragmentation index (MFI) measures the breakdown of these structural elements which occurs as an initial step in the process of protein degradation and meat tenderisation. MFI was lower (i.e. less fragmentation; P<0.05) in LD samples from HE steers than from LE steers, both in samples aged for 1 day (67.7 v. 72.5 units) and in samples aged for 14 days (87.8 v. 91.1 units). The rate of decline in MFI between 1 and 14 days post slaughter was similar in the LD samples from both lines of steers. There were no differences (P>0.05) between HE and LE steers in the activity of m-calpain and &micro;-calpain in LD immediately after slaughter (HE steers: 1.9 and 2.3 units, LE steers: 1.8 and 2.1 units). The level of calpastatin in LD from the HE steers was 13% higher than in the LD from the LE steers (5.2 and 4.6 units respectively, P<0.05). Rate of myofibril fragmentation was positively correlated (P<0.01) with the ratios of both m-calpain and µ-calpain to calpastatin, but not (P>0.10) with levels of either calpain or calpastatin. A single generation of divergent selection for RFI produced differences in calpastatin and myofibril fragmentation that may, with on-going selection for low RFI, negatively affect meat tenderness.


1992 ◽  
Vol 32 (4) ◽  
pp. 429 ◽  
Author(s):  
DL Hopkins ◽  
KD Gilbert ◽  
KL Pirlot ◽  
AHK Roberts

Growth and carcass parameters were studied for 62 second-cross lambs (Poll Dorset rams over Border Leicester x Merino ewes) and 55 purebred Elliottdale lambs. Second cross lambs grew faster (P<0.001) from weaning to the first slaughter time than Elliottdale lambs and consequently weighed more and had heavier carcasses. Elliottdale lambs produced significantly (P<0.001) more wool between birth and weaning. The slope of the relationship between GR (tissue depth over the 12th rib 110 mm from the midline) and carcass weight was 1.24 � 0.23 mm/kg for second cross lambs and 0.82 � 0.17 mm/kg for Elliottdale lambs, indicating the latter lambs were leaner at heavier weights. Measures of subcutaneous fat depth at the 5th/6th and 12th/13th ribs were similar when carcass weight differences were considered for a subsample of 21 second cross and 26 purebred Elliottdale lambs. Subjective assessment of fat distribution and carcass conformation by 2 assessors revealed a significant (P<0.001) difference between breeds; second cross lambs having a better conformation. Saleable meat yield, carcass composition, and muscle content of several cuts were determined for a subsample of lambs. At a common side weight of 8 kg there was no significant difference in saleable meat yield. At this weight, crossbred lambs had a significantly (P<0.05) higher muscle content (505 g/kg) than Elliottdale lambs (480 g/kg). Fat content was similar at 300 g/kg with crossbred lambs having significantly (P<0.05) less bone (190 g/kg) than Elliottdale lambs (2 10 g/kg). The legs of carcasses from crossbred lambs were shown to contain significantly more muscle than those of Elliottdales (206 v. 195 g/kg). Carcass weight explained some of the variation in weight of leg and forequarter muscle (r2 = 0.63 and 0.61). This was improved by including an assessment for conformation from 1 assessor (r2 = 0.69 and 0.64). Eye muscle area at the 12th rib did not add significantly to the prediction; it was not different between breeds, nor was its depth to width ratio different between breeds. The pH measurements of the M. longissimus thoracis et lumborum were similar between breeds.


Sign in / Sign up

Export Citation Format

Share Document